Loading…

Adsorption at Nanoconfined Solid-Water Interfaces

Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in c...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of physical chemistry 2023-04, Vol.74 (1), p.169-191
Main Authors: Ilgen, Anastasia G, Leung, Kevin, Criscenti, Louise J, Greathouse, Jeffery A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83
cites cdi_FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83
container_end_page 191
container_issue 1
container_start_page 169
container_title Annual review of physical chemistry
container_volume 74
creator Ilgen, Anastasia G
Leung, Kevin
Criscenti, Louise J
Greathouse, Jeffery A
description Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores cages (3D confinement), channels (2D confinement), and slits (1D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid-water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. Finally, the implications of these findings and future research directions are discussed.
doi_str_mv 10.1146/annurev-physchem-083022-030802
format article
fullrecord <record><control><sourceid>proquest_annua</sourceid><recordid>TN_cdi_annualreviews_primary_10_1146_annurev_physchem_083022_030802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806557007</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83</originalsourceid><addsrcrecordid>eNqVkE1LxDAQhoMouq7-BVkQxEt0kjRJexFk8QtEDyp6C2k6xUo3WZNW8d9b6a4Hb15mLs_7zvAQcsTghLFMnVrv-4gfdPn6ldwrLijkAjinICAHvkEmTGaSMlmITTIBUIpmXL3skN2U3gCgEBnfJjtCaaGVVhPCzqsU4rJrgp_ZbnZnfXDB143HavYQ2qaiz7bDOLvxw6ytw7RHtmrbJtxf7Sl5urx4nF_T2_urm_n5LbWZZh1lWFZayMJlVaGcxoqVleW5RJ7r0klbZ-gEAhfSKg7IRcEUCCwzVpauqHMxJcdj7zKG9x5TZxZNcti21mPok-FaCzbEGRvQwz_oW-ijH74zPAclpQbQA3U2Ui6GlCLWZhmbhY1fhoH5kWtWcs1arhnlmlHuUHCwOtOXC6x-42ubAzAfgZ8i2w5VDX6m_575BpwekZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806557007</pqid></control><display><type>article</type><title>Adsorption at Nanoconfined Solid-Water Interfaces</title><source>Annual Reviews Open Access</source><creator>Ilgen, Anastasia G ; Leung, Kevin ; Criscenti, Louise J ; Greathouse, Jeffery A</creator><creatorcontrib>Ilgen, Anastasia G ; Leung, Kevin ; Criscenti, Louise J ; Greathouse, Jeffery A</creatorcontrib><description>Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores cages (3D confinement), channels (2D confinement), and slits (1D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid-water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. Finally, the implications of these findings and future research directions are discussed.</description><identifier>ISSN: 0066-426X</identifier><identifier>EISSN: 1545-1593</identifier><identifier>DOI: 10.1146/annurev-physchem-083022-030802</identifier><identifier>PMID: 36737676</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Adsorption ; Catalysis ; Chemical properties ; Chemical separation ; Confinement ; nanoconfinement ; nanopore ; Slits ; Solid surfaces ; speciation ; Surface chemistry ; surface complexation ; Water treatment</subject><ispartof>Annual review of physical chemistry, 2023-04, Vol.74 (1), p.169-191</ispartof><rights>Copyright Annual Reviews, Inc. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83</citedby><cites>FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-physchem-083022-030802?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-physchem-083022-030802$$EHTML$$P50$$Gannualreviews$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27892,27924,27925,78360,78465</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36737676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ilgen, Anastasia G</creatorcontrib><creatorcontrib>Leung, Kevin</creatorcontrib><creatorcontrib>Criscenti, Louise J</creatorcontrib><creatorcontrib>Greathouse, Jeffery A</creatorcontrib><title>Adsorption at Nanoconfined Solid-Water Interfaces</title><title>Annual review of physical chemistry</title><addtitle>Annu Rev Phys Chem</addtitle><description>Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores cages (3D confinement), channels (2D confinement), and slits (1D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid-water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. Finally, the implications of these findings and future research directions are discussed.</description><subject>Adsorption</subject><subject>Catalysis</subject><subject>Chemical properties</subject><subject>Chemical separation</subject><subject>Confinement</subject><subject>nanoconfinement</subject><subject>nanopore</subject><subject>Slits</subject><subject>Solid surfaces</subject><subject>speciation</subject><subject>Surface chemistry</subject><subject>surface complexation</subject><subject>Water treatment</subject><issn>0066-426X</issn><issn>1545-1593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ZYWBE</sourceid><recordid>eNqVkE1LxDAQhoMouq7-BVkQxEt0kjRJexFk8QtEDyp6C2k6xUo3WZNW8d9b6a4Hb15mLs_7zvAQcsTghLFMnVrv-4gfdPn6ldwrLijkAjinICAHvkEmTGaSMlmITTIBUIpmXL3skN2U3gCgEBnfJjtCaaGVVhPCzqsU4rJrgp_ZbnZnfXDB143HavYQ2qaiz7bDOLvxw6ytw7RHtmrbJtxf7Sl5urx4nF_T2_urm_n5LbWZZh1lWFZayMJlVaGcxoqVleW5RJ7r0klbZ-gEAhfSKg7IRcEUCCwzVpauqHMxJcdj7zKG9x5TZxZNcti21mPok-FaCzbEGRvQwz_oW-ijH74zPAclpQbQA3U2Ui6GlCLWZhmbhY1fhoH5kWtWcs1arhnlmlHuUHCwOtOXC6x-42ubAzAfgZ8i2w5VDX6m_575BpwekZI</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Ilgen, Anastasia G</creator><creator>Leung, Kevin</creator><creator>Criscenti, Louise J</creator><creator>Greathouse, Jeffery A</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>ZYWBE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20230424</creationdate><title>Adsorption at Nanoconfined Solid-Water Interfaces</title><author>Ilgen, Anastasia G ; Leung, Kevin ; Criscenti, Louise J ; Greathouse, Jeffery A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Catalysis</topic><topic>Chemical properties</topic><topic>Chemical separation</topic><topic>Confinement</topic><topic>nanoconfinement</topic><topic>nanopore</topic><topic>Slits</topic><topic>Solid surfaces</topic><topic>speciation</topic><topic>Surface chemistry</topic><topic>surface complexation</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilgen, Anastasia G</creatorcontrib><creatorcontrib>Leung, Kevin</creatorcontrib><creatorcontrib>Criscenti, Louise J</creatorcontrib><creatorcontrib>Greathouse, Jeffery A</creatorcontrib><collection>Annual Reviews Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of physical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilgen, Anastasia G</au><au>Leung, Kevin</au><au>Criscenti, Louise J</au><au>Greathouse, Jeffery A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption at Nanoconfined Solid-Water Interfaces</atitle><jtitle>Annual review of physical chemistry</jtitle><addtitle>Annu Rev Phys Chem</addtitle><date>2023-04-24</date><risdate>2023</risdate><volume>74</volume><issue>1</issue><spage>169</spage><epage>191</epage><pages>169-191</pages><issn>0066-426X</issn><eissn>1545-1593</eissn><abstract>Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores cages (3D confinement), channels (2D confinement), and slits (1D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid-water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. Finally, the implications of these findings and future research directions are discussed.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>36737676</pmid><doi>10.1146/annurev-physchem-083022-030802</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0066-426X
ispartof Annual review of physical chemistry, 2023-04, Vol.74 (1), p.169-191
issn 0066-426X
1545-1593
language eng
recordid cdi_annualreviews_primary_10_1146_annurev_physchem_083022_030802
source Annual Reviews Open Access
subjects Adsorption
Catalysis
Chemical properties
Chemical separation
Confinement
nanoconfinement
nanopore
Slits
Solid surfaces
speciation
Surface chemistry
surface complexation
Water treatment
title Adsorption at Nanoconfined Solid-Water Interfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_annua&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20at%20Nanoconfined%20Solid-Water%20Interfaces&rft.jtitle=Annual%20review%20of%20physical%20chemistry&rft.au=Ilgen,%20Anastasia%20G&rft.date=2023-04-24&rft.volume=74&rft.issue=1&rft.spage=169&rft.epage=191&rft.pages=169-191&rft.issn=0066-426X&rft.eissn=1545-1593&rft_id=info:doi/10.1146/annurev-physchem-083022-030802&rft_dat=%3Cproquest_annua%3E2806557007%3C/proquest_annua%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806557007&rft_id=info:pmid/36737676&rfr_iscdi=true