Loading…
Adsorption at Nanoconfined Solid-Water Interfaces
Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in c...
Saved in:
Published in: | Annual review of physical chemistry 2023-04, Vol.74 (1), p.169-191 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83 |
---|---|
cites | cdi_FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83 |
container_end_page | 191 |
container_issue | 1 |
container_start_page | 169 |
container_title | Annual review of physical chemistry |
container_volume | 74 |
creator | Ilgen, Anastasia G Leung, Kevin Criscenti, Louise J Greathouse, Jeffery A |
description | Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores cages (3D confinement), channels (2D confinement), and slits (1D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid-water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. Finally, the implications of these findings and future research directions are discussed. |
doi_str_mv | 10.1146/annurev-physchem-083022-030802 |
format | article |
fullrecord | <record><control><sourceid>proquest_annua</sourceid><recordid>TN_cdi_annualreviews_primary_10_1146_annurev_physchem_083022_030802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2806557007</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83</originalsourceid><addsrcrecordid>eNqVkE1LxDAQhoMouq7-BVkQxEt0kjRJexFk8QtEDyp6C2k6xUo3WZNW8d9b6a4Hb15mLs_7zvAQcsTghLFMnVrv-4gfdPn6ldwrLijkAjinICAHvkEmTGaSMlmITTIBUIpmXL3skN2U3gCgEBnfJjtCaaGVVhPCzqsU4rJrgp_ZbnZnfXDB143HavYQ2qaiz7bDOLvxw6ytw7RHtmrbJtxf7Sl5urx4nF_T2_urm_n5LbWZZh1lWFZayMJlVaGcxoqVleW5RJ7r0klbZ-gEAhfSKg7IRcEUCCwzVpauqHMxJcdj7zKG9x5TZxZNcti21mPok-FaCzbEGRvQwz_oW-ijH74zPAclpQbQA3U2Ui6GlCLWZhmbhY1fhoH5kWtWcs1arhnlmlHuUHCwOtOXC6x-42ubAzAfgZ8i2w5VDX6m_575BpwekZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806557007</pqid></control><display><type>article</type><title>Adsorption at Nanoconfined Solid-Water Interfaces</title><source>Annual Reviews Open Access</source><creator>Ilgen, Anastasia G ; Leung, Kevin ; Criscenti, Louise J ; Greathouse, Jeffery A</creator><creatorcontrib>Ilgen, Anastasia G ; Leung, Kevin ; Criscenti, Louise J ; Greathouse, Jeffery A</creatorcontrib><description>Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores cages (3D confinement), channels (2D confinement), and slits (1D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid-water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. Finally, the implications of these findings and future research directions are discussed.</description><identifier>ISSN: 0066-426X</identifier><identifier>EISSN: 1545-1593</identifier><identifier>DOI: 10.1146/annurev-physchem-083022-030802</identifier><identifier>PMID: 36737676</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Adsorption ; Catalysis ; Chemical properties ; Chemical separation ; Confinement ; nanoconfinement ; nanopore ; Slits ; Solid surfaces ; speciation ; Surface chemistry ; surface complexation ; Water treatment</subject><ispartof>Annual review of physical chemistry, 2023-04, Vol.74 (1), p.169-191</ispartof><rights>Copyright Annual Reviews, Inc. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83</citedby><cites>FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-physchem-083022-030802?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-physchem-083022-030802$$EHTML$$P50$$Gannualreviews$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27892,27924,27925,78360,78465</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36737676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ilgen, Anastasia G</creatorcontrib><creatorcontrib>Leung, Kevin</creatorcontrib><creatorcontrib>Criscenti, Louise J</creatorcontrib><creatorcontrib>Greathouse, Jeffery A</creatorcontrib><title>Adsorption at Nanoconfined Solid-Water Interfaces</title><title>Annual review of physical chemistry</title><addtitle>Annu Rev Phys Chem</addtitle><description>Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores cages (3D confinement), channels (2D confinement), and slits (1D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid-water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. Finally, the implications of these findings and future research directions are discussed.</description><subject>Adsorption</subject><subject>Catalysis</subject><subject>Chemical properties</subject><subject>Chemical separation</subject><subject>Confinement</subject><subject>nanoconfinement</subject><subject>nanopore</subject><subject>Slits</subject><subject>Solid surfaces</subject><subject>speciation</subject><subject>Surface chemistry</subject><subject>surface complexation</subject><subject>Water treatment</subject><issn>0066-426X</issn><issn>1545-1593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ZYWBE</sourceid><recordid>eNqVkE1LxDAQhoMouq7-BVkQxEt0kjRJexFk8QtEDyp6C2k6xUo3WZNW8d9b6a4Hb15mLs_7zvAQcsTghLFMnVrv-4gfdPn6ldwrLijkAjinICAHvkEmTGaSMlmITTIBUIpmXL3skN2U3gCgEBnfJjtCaaGVVhPCzqsU4rJrgp_ZbnZnfXDB143HavYQ2qaiz7bDOLvxw6ytw7RHtmrbJtxf7Sl5urx4nF_T2_urm_n5LbWZZh1lWFZayMJlVaGcxoqVleW5RJ7r0klbZ-gEAhfSKg7IRcEUCCwzVpauqHMxJcdj7zKG9x5TZxZNcti21mPok-FaCzbEGRvQwz_oW-ijH74zPAclpQbQA3U2Ui6GlCLWZhmbhY1fhoH5kWtWcs1arhnlmlHuUHCwOtOXC6x-42ubAzAfgZ8i2w5VDX6m_575BpwekZI</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Ilgen, Anastasia G</creator><creator>Leung, Kevin</creator><creator>Criscenti, Louise J</creator><creator>Greathouse, Jeffery A</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>ZYWBE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20230424</creationdate><title>Adsorption at Nanoconfined Solid-Water Interfaces</title><author>Ilgen, Anastasia G ; Leung, Kevin ; Criscenti, Louise J ; Greathouse, Jeffery A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Catalysis</topic><topic>Chemical properties</topic><topic>Chemical separation</topic><topic>Confinement</topic><topic>nanoconfinement</topic><topic>nanopore</topic><topic>Slits</topic><topic>Solid surfaces</topic><topic>speciation</topic><topic>Surface chemistry</topic><topic>surface complexation</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilgen, Anastasia G</creatorcontrib><creatorcontrib>Leung, Kevin</creatorcontrib><creatorcontrib>Criscenti, Louise J</creatorcontrib><creatorcontrib>Greathouse, Jeffery A</creatorcontrib><collection>Annual Reviews Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of physical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilgen, Anastasia G</au><au>Leung, Kevin</au><au>Criscenti, Louise J</au><au>Greathouse, Jeffery A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption at Nanoconfined Solid-Water Interfaces</atitle><jtitle>Annual review of physical chemistry</jtitle><addtitle>Annu Rev Phys Chem</addtitle><date>2023-04-24</date><risdate>2023</risdate><volume>74</volume><issue>1</issue><spage>169</spage><epage>191</epage><pages>169-191</pages><issn>0066-426X</issn><eissn>1545-1593</eissn><abstract>Reactions at solid-water interfaces play a foundational role in water treatment systems, catalysis, and chemical separations, and in predicting chemical fate and transport in the environment. Over the last century, experimental measurements and computational models have made tremendous progress in capturing reactions at solid surfaces. The interfacial reactivity of a solid surface, however, can change dramatically and unexpectedly when it is confined to the nanoscale. Nanoconfinement can arise in different geometries such as pores cages (3D confinement), channels (2D confinement), and slits (1D confinement). Therefore, measurements on unconfined surfaces, and molecular models parameterized based on these measurements, fail to capture chemical behaviors under nanoconfinement. This review evaluates recent experimental and theoretical advances, with a focus on adsorption at solid-water interfaces. We review how nanoconfinement alters the physico-chemical properties of water, and how the structure and dynamics of nanoconfined water dictate energetics, pathways, and products of adsorption in nanopores. Finally, the implications of these findings and future research directions are discussed.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>36737676</pmid><doi>10.1146/annurev-physchem-083022-030802</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0066-426X |
ispartof | Annual review of physical chemistry, 2023-04, Vol.74 (1), p.169-191 |
issn | 0066-426X 1545-1593 |
language | eng |
recordid | cdi_annualreviews_primary_10_1146_annurev_physchem_083022_030802 |
source | Annual Reviews Open Access |
subjects | Adsorption Catalysis Chemical properties Chemical separation Confinement nanoconfinement nanopore Slits Solid surfaces speciation Surface chemistry surface complexation Water treatment |
title | Adsorption at Nanoconfined Solid-Water Interfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_annua&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20at%20Nanoconfined%20Solid-Water%20Interfaces&rft.jtitle=Annual%20review%20of%20physical%20chemistry&rft.au=Ilgen,%20Anastasia%20G&rft.date=2023-04-24&rft.volume=74&rft.issue=1&rft.spage=169&rft.epage=191&rft.pages=169-191&rft.issn=0066-426X&rft.eissn=1545-1593&rft_id=info:doi/10.1146/annurev-physchem-083022-030802&rft_dat=%3Cproquest_annua%3E2806557007%3C/proquest_annua%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a471t-1ebd7359c4d96c7ed1bda285e287bc5af4ec3e0235a620e2391603eb41bbc9f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806557007&rft_id=info:pmid/36737676&rfr_iscdi=true |