Loading…
Moduli of Supersingular Abelian Varieties
Abelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description...
Saved in:
Main Authors: | , |
---|---|
Format: | Book |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a48713-f5fb42674b58b005390d507396e44c3eedb16ffa95a469582a7110291d85ea83 |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | |
container_volume | 1680 |
creator | Li, Ke-Zheng Oort, Frans |
description | Abelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description of various structures. For low dimensions the moduli of supersingular abelian varieties is by now well understood. In this book we provide a description of the supersingular locus in all dimensions, in particular we compute the dimension of it: it turns out to be equal to Äg.g/4Ü, and we express the number of components as a class number, thus completing a long historical line where special cases were studied and general results were conjectured (Deuring, Hasse, Igusa, Oda-Oort, Katsura-Oort). |
doi_str_mv | 10.1007/BFb0095931 |
format | book |
fullrecord | <record><control><sourceid>proquest_askew</sourceid><recordid>TN_cdi_askewsholts_vlebooks_9783540696667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6819238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a48713-f5fb42674b58b005390d507396e44c3eedb16ffa95a469582a7110291d85ea83</originalsourceid><addsrcrecordid>eNqNkMtOwkAUhsdrBGTjE3SnLCpzvyyBgJpgXHjZNlN6KpUJxZkWX99CNW40cTZnMd9_8p8PoQuCrwnGajiepRgbYRg5QF0mOJZGSokPUYdIomIjDT1CfaP0_o8ZytQx6jRJEWvO-CnqEqwkpUZLdYb6Ibzh5jHKDdcdNLgvs9oVUZlHj_UGfCjWr7WzPhql4Aq7jl6sL6AqIJyjk9y6AP2v2UPPs-nT5DaeP9zcTUbz2HKtCItzkaecSsVToZvmghmcCayYkcD5ggFkKZF5bo2wXBqhqVWEYGpIpgVYzXpo0O61YQUfYVm6KiRbB2lZrkLyfefOgWrYq5YNG98UB5-0FMHJzl3y465Bh7-g1i-WxRb-SFy2iY0v32sIVbLvsIB15a1LpuOJ1KTRrf9BCmEkE4J9Aq1CgOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>book</recordtype><pqid>EBC5596355</pqid></control><display><type>book</type><title>Moduli of Supersingular Abelian Varieties</title><source>SpringerLink Books Lecture Notes In Mathematics Archive</source><source>SpringerLINK Lecture Notes in Mathematics Contemporary (1997-present)</source><source>Springer Nature - Springer Lecture Notes in Mathematics eBooks</source><creator>Li, Ke-Zheng ; Oort, Frans</creator><creatorcontrib>Li, Ke-Zheng ; Oort, Frans ; SpringerLink (Online service)</creatorcontrib><description>Abelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description of various structures. For low dimensions the moduli of supersingular abelian varieties is by now well understood. In this book we provide a description of the supersingular locus in all dimensions, in particular we compute the dimension of it: it turns out to be equal to Äg.g/4Ü, and we express the number of components as a class number, thus completing a long historical line where special cases were studied and general results were conjectured (Deuring, Hasse, Igusa, Oda-Oort, Katsura-Oort).</description><edition>1</edition><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 9783540639237</identifier><identifier>ISBN: 3540639233</identifier><identifier>ISBN: 9783662211793</identifier><identifier>ISBN: 3662211793</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 3540696660</identifier><identifier>EISBN: 9783540696667</identifier><identifier>DOI: 10.1007/BFb0095931</identifier><identifier>OCLC: 1076229867</identifier><identifier>OCLC: 1287136151</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin / Heidelberg</publisher><subject>Abelian varieties ; Algebraic Geometry ; Algebraic varieties ; Geometry, Algebraic ; Mathematics ; Mathematics and Statistics ; Moduli theory</subject><creationdate>2006</creationdate><tpages>123</tpages><format>123</format><rights>Springer-Verlag Berlin Heidelberg 1998</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a48713-f5fb42674b58b005390d507396e44c3eedb16ffa95a469582a7110291d85ea83</citedby><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://media.springernature.com/w306/springer-static/cover-hires/book/978-3-540-69666-7</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0095931$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0095931$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>306,780,784,786,27925,37681,38043,40872,41231,41941,42300</link.rule.ids></links><search><creatorcontrib>Li, Ke-Zheng</creatorcontrib><creatorcontrib>Oort, Frans</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib><title>Moduli of Supersingular Abelian Varieties</title><description>Abelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description of various structures. For low dimensions the moduli of supersingular abelian varieties is by now well understood. In this book we provide a description of the supersingular locus in all dimensions, in particular we compute the dimension of it: it turns out to be equal to Äg.g/4Ü, and we express the number of components as a class number, thus completing a long historical line where special cases were studied and general results were conjectured (Deuring, Hasse, Igusa, Oda-Oort, Katsura-Oort).</description><subject>Abelian varieties</subject><subject>Algebraic Geometry</subject><subject>Algebraic varieties</subject><subject>Geometry, Algebraic</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Moduli theory</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>9783540639237</isbn><isbn>3540639233</isbn><isbn>9783662211793</isbn><isbn>3662211793</isbn><isbn>3540696660</isbn><isbn>9783540696667</isbn><fulltext>true</fulltext><rsrctype>book</rsrctype><creationdate>2006</creationdate><recordtype>book</recordtype><sourceid/><recordid>eNqNkMtOwkAUhsdrBGTjE3SnLCpzvyyBgJpgXHjZNlN6KpUJxZkWX99CNW40cTZnMd9_8p8PoQuCrwnGajiepRgbYRg5QF0mOJZGSokPUYdIomIjDT1CfaP0_o8ZytQx6jRJEWvO-CnqEqwkpUZLdYb6Ibzh5jHKDdcdNLgvs9oVUZlHj_UGfCjWr7WzPhql4Aq7jl6sL6AqIJyjk9y6AP2v2UPPs-nT5DaeP9zcTUbz2HKtCItzkaecSsVToZvmghmcCayYkcD5ggFkKZF5bo2wXBqhqVWEYGpIpgVYzXpo0O61YQUfYVm6KiRbB2lZrkLyfefOgWrYq5YNG98UB5-0FMHJzl3y465Bh7-g1i-WxRb-SFy2iY0v32sIVbLvsIB15a1LpuOJ1KTRrf9BCmEkE4J9Aq1CgOQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Li, Ke-Zheng</creator><creator>Oort, Frans</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope/></search><sort><creationdate>2006</creationdate><title>Moduli of Supersingular Abelian Varieties</title><author>Li, Ke-Zheng ; Oort, Frans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a48713-f5fb42674b58b005390d507396e44c3eedb16ffa95a469582a7110291d85ea83</frbrgroupid><rsrctype>books</rsrctype><prefilter>books</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Abelian varieties</topic><topic>Algebraic Geometry</topic><topic>Algebraic varieties</topic><topic>Geometry, Algebraic</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Moduli theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Ke-Zheng</creatorcontrib><creatorcontrib>Oort, Frans</creatorcontrib><creatorcontrib>SpringerLink (Online service)</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ke-Zheng</au><au>Oort, Frans</au><aucorp>SpringerLink (Online service)</aucorp><format>book</format><genre>book</genre><ristype>BOOK</ristype><btitle>Moduli of Supersingular Abelian Varieties</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006</date><risdate>2006</risdate><volume>1680</volume><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>9783540639237</isbn><isbn>3540639233</isbn><isbn>9783662211793</isbn><isbn>3662211793</isbn><eisbn>3540696660</eisbn><eisbn>9783540696667</eisbn><abstract>Abelian varieties can be classified via their moduli. In positive characteristic the structure of the p-torsion-structure is an additional, useful tool. For that structure supersingular abelian varieties can be considered the most special ones. They provide a starting point for the fine description of various structures. For low dimensions the moduli of supersingular abelian varieties is by now well understood. In this book we provide a description of the supersingular locus in all dimensions, in particular we compute the dimension of it: it turns out to be equal to Äg.g/4Ü, and we express the number of components as a class number, thus completing a long historical line where special cases were studied and general results were conjectured (Deuring, Hasse, Igusa, Oda-Oort, Katsura-Oort).</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/BFb0095931</doi><oclcid>1076229867</oclcid><oclcid>1287136151</oclcid><tpages>123</tpages><edition>1</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0075-8434 |
ispartof | |
issn | 0075-8434 1617-9692 |
language | eng |
recordid | cdi_askewsholts_vlebooks_9783540696667 |
source | SpringerLink Books Lecture Notes In Mathematics Archive; SpringerLINK Lecture Notes in Mathematics Contemporary (1997-present); Springer Nature - Springer Lecture Notes in Mathematics eBooks |
subjects | Abelian varieties Algebraic Geometry Algebraic varieties Geometry, Algebraic Mathematics Mathematics and Statistics Moduli theory |
title | Moduli of Supersingular Abelian Varieties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_askew&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=book&rft.btitle=Moduli%20of%20Supersingular%20Abelian%20Varieties&rft.au=Li,%20Ke-Zheng&rft.aucorp=SpringerLink%20(Online%20service)&rft.date=2006&rft.volume=1680&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=9783540639237&rft.isbn_list=3540639233&rft.isbn_list=9783662211793&rft.isbn_list=3662211793&rft_id=info:doi/10.1007/BFb0095931&rft.eisbn=3540696660&rft.eisbn_list=9783540696667&rft_dat=%3Cproquest_askew%3EEBC6819238%3C/proquest_askew%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a48713-f5fb42674b58b005390d507396e44c3eedb16ffa95a469582a7110291d85ea83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=EBC5596355&rft_id=info:pmid/&rfr_iscdi=true |