Loading…

Nutrient amendments enrich microbial hydrocarbon degradation metagenomic potential in freshwater coastal wetland microcosm experiments

Biostimulating native microbes with fertilizers has proven to be a highly effective strategy to speed up biodegradation rates in microbial communities. This study investigates the genetic potential of microbes to degrade light synthetic crude oil in a freshwater coastal wetland. Experimental sedimen...

Full description

Saved in:
Bibliographic Details
Published in:Applied and environmental microbiology 2024-12, p.e0197224
Main Authors: Howland, Katie E, Mouradian, Jack J, Uzarski, Donald R, Henson, Michael W, Uzarski, Donald G, Learman, Deric R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biostimulating native microbes with fertilizers has proven to be a highly effective strategy to speed up biodegradation rates in microbial communities. This study investigates the genetic potential of microbes to degrade light synthetic crude oil in a freshwater coastal wetland. Experimental sediment microcosms were exposed to a variety of conditions (biological control, a light synthetic crude oil amendment, and light synthetic crude oil with nutrient amendment) and incubated for 30 days before volatile organic compounds (BTEX) were quantified and DNA was sequenced for metagenomic analysis. The resulting DNA sequences were binned into metagenome-assembled genomes (MAGs). Analyses of MAGs uncovered a 13-fold significant increase in the abundance of rate-limiting hydrocarbon degrading monooxygenases and dioxygenases, identified only in MAGs from the light synthetic crude oil with nutrient amendments. Further, complete degradation pathways for BTEX compounds were found only in MAGs resulting from the light synthetic crude with nutrient amendment. Moreover, volatile organic compounds (BTEX, cyclohexane, and naphthalene) analyses of microcosm sediments in the presence of nutrients documented that benzene was degraded below detection limits, toluene (98%) and ethylbenzene (67%) were predominantly reduced within 30 days. Results indicate that the genetic potential to degrade BTEX compounds in this freshwater wetland can be linked to the functional potential for bioremediation. BTEX compounds are typically more recalcitrant and tougher to degrade than alkanes. This study demonstrated that stimulating a microbial community with nutrients to enhance its ability to biodegrade hydrocarbons, even in a relatively nutrient-rich habitat like a freshwater wetland, is an effective remediation tactic. The impact of oil spills in a freshwater aquatic environment can pose dire social, economic, and ecological effects on the region. An oil spill in the Laurentian Great Lakes region has the potential to affect the drinking water of more than 30 million people. The light synthetic crude oil used in this experimental microcosm study is transported through an underground pipeline crossing the waterway between two Laurentian Great Lakes. This study collected metagenomic data (experiments in triplicate) and assessed the quantity of BTEX compounds, which connected microbial degradation function to gene potential. The resulting data documented the bioremediation capabilities of native
ISSN:0099-2240
1098-5336
DOI:10.1128/aem.01972-24