Loading…

Terminal Ballistics of the 9mm with Action Safety Bullet or Blitz-Action-Trauma (BAT) Ammunition

Specialty ammunition creating atypical gunshot wounds of entrance can create confusion and may be misinterpreted by pathologists unfamiliar with the terminal ballistics of these projectiles. The previously unreported wound ballistics caused by the 9mm with Action Safety bullet described in a homicid...

Full description

Saved in:
Bibliographic Details
Published in:Journal of forensic sciences 1994-05, Vol.39 (3), p.612-623
Main Authors: Lantz, PE, Stone, RS, Broudy, D, Morgan, TM
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Specialty ammunition creating atypical gunshot wounds of entrance can create confusion and may be misinterpreted by pathologists unfamiliar with the terminal ballistics of these projectiles. The previously unreported wound ballistics caused by the 9mm with Action Safety bullet described in a homicide highlights the atypical entrance wound(s) and wounding capacity of this novel ammunition. Manufactured by Geco division of Dynamit Nobel, the bullet consists of a nonjacketed solid copper alloy bullet body without a conventional lead core. The large deformation well and part of the smaller central channel is filled with a hard plastic core and post that creates a round nose bullet. The internal ballistics and unique design allow the plastic nose cap and post to separate from the copper alloy base while still in the barrel. The radiolucent nose cap leaves the bullet's path but can still penetrate tissue giving the appearance of a separate but smaller entrance wound. The sharp leading edge of the deformation well and relative high velocity of the bullet body creates a punched out entrance wound with minimal marginal abrasion. When the plastic nose cap or fragments of the plastic post impact the subject, test firings may allow an inference to the muzzle-target distance even in the absence of soot deposition or stippling.
ISSN:0022-1198
1556-4029
DOI:10.1520/JFS13637J