Loading…
A Thermal Nonlinear Approach for Mechanistic Empirical Modeling of Asphalt-Granular Base Layers Interface
This article proposes a mechanistic model for the interface between the asphalt surface course and granular base layers, along with an experimental procedure to assess the model parameters. The Mohr-Coulomb yield criteria was used to model interface shear strength, and Goodman’s law was used to rela...
Saved in:
Published in: | Journal of testing and evaluation 2020-01, Vol.48 (1), p.223-234 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article proposes a mechanistic model for the interface between the asphalt surface course and granular base layers, along with an experimental procedure to assess the model parameters. The Mohr-Coulomb yield criteria was used to model interface shear strength, and Goodman’s law was used to relate the relative displacement and shear stress over the interface that bonds the investigated layers. Moreover, the transversal reaction modulus was assumed to be stress dependent, which makes the model nonlinear. Experimental results have shown agreement with model assumptions. Furthermore, a simulation of Cracked Area evolution was performed to verify the effects of the interface model on the pavement structural response. Finally, the model proposed presented itself to be a strong alternative to properly consider the mechanical behavior of the asphaltic-granular base layers interface. |
---|---|
ISSN: | 0090-3973 1945-7553 |
DOI: | 10.1520/JTE20180931 |