Loading…
Call admission control for integrated multimedia service in heterogeneous mobile hotspots
Mobile hotspots are a promising trend to offer ubiquitous multimedia services even in public transit vehicles such as buses, trains, and airplanes. However, it is very challenging due to high mobility, fast channel fading, and stringent multimedia quality-of-service (QoS) constraints. Effective admi...
Saved in:
Published in: | EURASIP journal on wireless communications and networking 2013-05, Vol.2013 (1), p.142-142, Article 142 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mobile hotspots
are a promising trend to offer ubiquitous multimedia services even in public transit vehicles such as buses, trains, and airplanes. However, it is very challenging due to high mobility, fast channel fading, and stringent multimedia quality-of-service (QoS) constraints. Effective admission control is necessary to limit the admitted traffic so that accepted users are provided QoS guarantee. In this paper, we develop a comprehensive analytical framework for the performance of interactive data service and conversational video service in mobile hotspots with heterogeneous wireless technologies. We jointly consider the contention-based wireless local area network (WLAN) at the link layer, the highly varying wireless wide area network (WWAN) due to vehicle mobility and multipath fading, adaptive modulation and coding for the WWAN link at the physical layer, and batch packet arrivals of video traffic at the application layer. Based on the analytical approach, the maximum numbers of users are derived for QoS assurance. Simulation results verified the validity of the analysis. Numerical results demonstrated the effectiveness of the analytical approach for admission control and the effects of network parameters such as the traffic buffer size and the transmission distance. |
---|---|
ISSN: | 1687-1499 1687-1499 |
DOI: | 10.1186/1687-1499-2013-142 |