Loading…

Contextual Approach to Industrial Situation Recognition

The article describes the development of multifaceted and efficient approaches to the context information analysis for synthesis of industrial situations context recognition algorithm in automated management systems within the enterprises. The probability theory method and method of statistical anal...

Full description

Saved in:
Bibliographic Details
Published in:TEM Journal 2020-08, Vol.9 (3), p.944-950
Main Authors: Shepel`, V.N, Speshilova, N.V, Tripkosh, V.A, Rakhmatullin, R.R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 950
container_issue 3
container_start_page 944
container_title TEM Journal
container_volume 9
creator Shepel`, V.N
Speshilova, N.V
Tripkosh, V.A
Rakhmatullin, R.R
description The article describes the development of multifaceted and efficient approaches to the context information analysis for synthesis of industrial situations context recognition algorithm in automated management systems within the enterprises. The probability theory method and method of statistical analysis, decision theory method, methods of algorithm and combination theory were used while researching. The research resulted in the development of new approaches to the context information analysis framework for pattern recognition which enables us to identify the procedure of contextual recognition for synthesis of working industrial situation recognition algorithm. A correspondence between the recognition error rate and the guaranteed recognition threshold, which can be used for setting up the automated context-based recognition systems, was analytically obtained during the research.
doi_str_mv 10.18421/TEM93-15
format article
fullrecord <record><control><sourceid>ceeol_cross</sourceid><recordid>TN_cdi_ceeol_journals_894543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ceeol_id>894543</ceeol_id><sourcerecordid>894543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-e34a484b977ac57d657bc52daa8ae2591a835949a1c1cc285d19df2c30185913</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGoP3j0seBJcTTLJJjmW0mqhImjvIc1mdcu6WbNZ0H9vbItexNM85n28GR5C5wTfEMkouV3PHxTkhB-hEaVE5BIAjn80Vqdo0vdbjDERBQPORkjMfBvdRxxMk027LnhjX7Pos2VbDn0MdVo_18mNtW-zJ2f9S1t_6zN0Upmmd5PDHKP1Yr6e3eerx7vlbLrKLYCMuQNmmGQbJYSxXJQFFxvLaWmMNI5yRYwErpgyxBJrqeQlUWVFLWAikwtjdLmPTZ-9D66PeuuH0KaLmiqKAYhg8l-KsUIAZaRI1NWessH3fXCV7kL9ZsKnJljv-tO7_jThib04sM755jdOKsYZJPv6T9uEWNvG6dLbA6q7soIvEFt5aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446732416</pqid></control><display><type>article</type><title>Contextual Approach to Industrial Situation Recognition</title><source>Publicly Available Content Database</source><creator>Shepel`, V.N ; Speshilova, N.V ; Tripkosh, V.A ; Rakhmatullin, R.R</creator><creatorcontrib>Shepel`, V.N ; Speshilova, N.V ; Tripkosh, V.A ; Rakhmatullin, R.R</creatorcontrib><description>The article describes the development of multifaceted and efficient approaches to the context information analysis for synthesis of industrial situations context recognition algorithm in automated management systems within the enterprises. The probability theory method and method of statistical analysis, decision theory method, methods of algorithm and combination theory were used while researching. The research resulted in the development of new approaches to the context information analysis framework for pattern recognition which enables us to identify the procedure of contextual recognition for synthesis of working industrial situation recognition algorithm. A correspondence between the recognition error rate and the guaranteed recognition threshold, which can be used for setting up the automated context-based recognition systems, was analytically obtained during the research.</description><identifier>ISSN: 2217-8309</identifier><identifier>EISSN: 2217-8333</identifier><identifier>DOI: 10.18421/TEM93-15</identifier><language>eng</language><publisher>Novi Pazar: UIKTEN - Association for Information Communication Technology Education and Science</publisher><subject>Algorithms ; Automation ; Business Economy / Management ; Context ; Data analysis ; Decision analysis ; Decision theory ; Information management ; Management systems ; Pattern analysis ; Pattern recognition ; Probability ; Probability distribution ; Probability theory ; Statistical analysis ; Synthesis</subject><ispartof>TEM Journal, 2020-08, Vol.9 (3), p.944-950</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.ceeol.com//api/image/getissuecoverimage?id=picture_2020_56451.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2446732416?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Shepel`, V.N</creatorcontrib><creatorcontrib>Speshilova, N.V</creatorcontrib><creatorcontrib>Tripkosh, V.A</creatorcontrib><creatorcontrib>Rakhmatullin, R.R</creatorcontrib><title>Contextual Approach to Industrial Situation Recognition</title><title>TEM Journal</title><addtitle>TEM Journal</addtitle><description>The article describes the development of multifaceted and efficient approaches to the context information analysis for synthesis of industrial situations context recognition algorithm in automated management systems within the enterprises. The probability theory method and method of statistical analysis, decision theory method, methods of algorithm and combination theory were used while researching. The research resulted in the development of new approaches to the context information analysis framework for pattern recognition which enables us to identify the procedure of contextual recognition for synthesis of working industrial situation recognition algorithm. A correspondence between the recognition error rate and the guaranteed recognition threshold, which can be used for setting up the automated context-based recognition systems, was analytically obtained during the research.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Business Economy / Management</subject><subject>Context</subject><subject>Data analysis</subject><subject>Decision analysis</subject><subject>Decision theory</subject><subject>Information management</subject><subject>Management systems</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Statistical analysis</subject><subject>Synthesis</subject><issn>2217-8309</issn><issn>2217-8333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kEFLAzEQhYMoWGoP3j0seBJcTTLJJjmW0mqhImjvIc1mdcu6WbNZ0H9vbItexNM85n28GR5C5wTfEMkouV3PHxTkhB-hEaVE5BIAjn80Vqdo0vdbjDERBQPORkjMfBvdRxxMk027LnhjX7Pos2VbDn0MdVo_18mNtW-zJ2f9S1t_6zN0Upmmd5PDHKP1Yr6e3eerx7vlbLrKLYCMuQNmmGQbJYSxXJQFFxvLaWmMNI5yRYwErpgyxBJrqeQlUWVFLWAikwtjdLmPTZ-9D66PeuuH0KaLmiqKAYhg8l-KsUIAZaRI1NWessH3fXCV7kL9ZsKnJljv-tO7_jThib04sM755jdOKsYZJPv6T9uEWNvG6dLbA6q7soIvEFt5aA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Shepel`, V.N</creator><creator>Speshilova, N.V</creator><creator>Tripkosh, V.A</creator><creator>Rakhmatullin, R.R</creator><general>UIKTEN - Association for Information Communication Technology Education and Science</general><scope>AE2</scope><scope>BIXPP</scope><scope>REL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200801</creationdate><title>Contextual Approach to Industrial Situation Recognition</title><author>Shepel`, V.N ; Speshilova, N.V ; Tripkosh, V.A ; Rakhmatullin, R.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-e34a484b977ac57d657bc52daa8ae2591a835949a1c1cc285d19df2c30185913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Business Economy / Management</topic><topic>Context</topic><topic>Data analysis</topic><topic>Decision analysis</topic><topic>Decision theory</topic><topic>Information management</topic><topic>Management systems</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Statistical analysis</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shepel`, V.N</creatorcontrib><creatorcontrib>Speshilova, N.V</creatorcontrib><creatorcontrib>Tripkosh, V.A</creatorcontrib><creatorcontrib>Rakhmatullin, R.R</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>CEEOL: Open Access</collection><collection>Central and Eastern European Online Library - CEEOL Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>TEM Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shepel`, V.N</au><au>Speshilova, N.V</au><au>Tripkosh, V.A</au><au>Rakhmatullin, R.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contextual Approach to Industrial Situation Recognition</atitle><jtitle>TEM Journal</jtitle><addtitle>TEM Journal</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>9</volume><issue>3</issue><spage>944</spage><epage>950</epage><pages>944-950</pages><issn>2217-8309</issn><eissn>2217-8333</eissn><abstract>The article describes the development of multifaceted and efficient approaches to the context information analysis for synthesis of industrial situations context recognition algorithm in automated management systems within the enterprises. The probability theory method and method of statistical analysis, decision theory method, methods of algorithm and combination theory were used while researching. The research resulted in the development of new approaches to the context information analysis framework for pattern recognition which enables us to identify the procedure of contextual recognition for synthesis of working industrial situation recognition algorithm. A correspondence between the recognition error rate and the guaranteed recognition threshold, which can be used for setting up the automated context-based recognition systems, was analytically obtained during the research.</abstract><cop>Novi Pazar</cop><pub>UIKTEN - Association for Information Communication Technology Education and Science</pub><doi>10.18421/TEM93-15</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2217-8309
ispartof TEM Journal, 2020-08, Vol.9 (3), p.944-950
issn 2217-8309
2217-8333
language eng
recordid cdi_ceeol_journals_894543
source Publicly Available Content Database
subjects Algorithms
Automation
Business Economy / Management
Context
Data analysis
Decision analysis
Decision theory
Information management
Management systems
Pattern analysis
Pattern recognition
Probability
Probability distribution
Probability theory
Statistical analysis
Synthesis
title Contextual Approach to Industrial Situation Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contextual%20Approach%20to%20Industrial%20Situation%20Recognition&rft.jtitle=TEM%20Journal&rft.au=Shepel%60,%20V.N&rft.date=2020-08-01&rft.volume=9&rft.issue=3&rft.spage=944&rft.epage=950&rft.pages=944-950&rft.issn=2217-8309&rft.eissn=2217-8333&rft_id=info:doi/10.18421/TEM93-15&rft_dat=%3Cceeol_cross%3E894543%3C/ceeol_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-e34a484b977ac57d657bc52daa8ae2591a835949a1c1cc285d19df2c30185913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2446732416&rft_id=info:pmid/&rft_ceeol_id=894543&rfr_iscdi=true