Loading…

Identification and Evolution Ejin Sub-Basin of the Heihe of Groundwater Chemistry in the River, Northwest China

Hydro-chemical characteristics of groundwater and their changes as affected by human activities were studied in the Ejin Sub-Basin of the Inner Mongolia Autonomous Region, China, to understand the groundwater evolution, to identify the predominant geochemical processes taking place along the horizon...

Full description

Saved in:
Bibliographic Details
Published in:Pedosphere 2007, Vol.17 (3), p.331-342
Main Author: SU Yong-Hong FENG Qi ZHU Gao-Feng SI Jian-Hua ZHANG Yan-Wu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydro-chemical characteristics of groundwater and their changes as affected by human activities were studied in the Ejin Sub-Basin of the Inner Mongolia Autonomous Region, China, to understand the groundwater evolution, to identify the predominant geochemical processes taking place along the horizontal groundwater flow path, and to characterize anthropogenic factors affecting the groundwater environment based on previous data. The concentrations of major ions and total dissolved solids (TDS) in the groundwater showed a great variation, with 62.5% of the samples being brackish (TDS ≥ 1 000 mg L^-l). The groundwater system showed a gradual hydro-chemical zonation composed of Na^+ -HCO3^-, Na^+ -Mg^2+ -SO4 ^2 -Cl^-, and Na^+ -Cl^-. The relationships among the dissolved species allowed identification of the origin of solutes and the processes that generated the observed water compositions. The dissolution of halite, dolomite, and 2- gypsum explained, in part, the presence of Na^+, K^+, Cl^-, SO^4 , and Ca^2+, but other processes, such as mixing, Na^+ exchange for Ca^2+ and Mg^2+, and calcite precipitation also contributed to the composition of water. Human activity, in particular large-scale water resources development associated with dramatic population growth in the last 50 years, has led to tremendous changes in the groundwater regime, which reflected in surface water runoff change, decline of groundwater table and degeneration of surface water and groundwater quality. Solving these largely anthropogenic problems requires concerted, massive and long-term efforts.
ISSN:1002-0160
2210-5107