Loading…

Calculation of Cu-rich part of Cu-Ni-Si phase diagram

The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-rich parts of the isothermal section of the phase diagram at 300-600 ℃ , and the thr...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of Nonferrous Metals Society of China 2007-11, Vol.17 (A01), p.12-15
Main Author: 陆德平 王俊 A.Atrens 邹兴权 陆磊 孙宝德
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-rich parts of the isothermal section of the phase diagram at 300-600 ℃ , and the three two-phase areas are FCC-Al(Cu-rich)+γ-Ni5Si2, FCC-Al(Cu-rich)+δ-Ni2Si and FCC-Al(Cu-rich)+ε-Ni3Si2, two three-phase areas are FCC-Al(Cu-rich)+),-Ni5Si2+δ-Ni2Si and FCC-Al(Cu-rich)+δ-Ni2Si+e-Ni3Si2. For this reason, an alloy located in the Cu-rich portion may precipitate γ-Ni5Si2, δ-Ni2Si or ε-Ni3Si2; the proportion of each phase depends on the alloy composition and aging temperature. The transmission electron microscope analysis of the Cu-3.2Ni-0.75Si alloy indicates that the precipitates are mainly δ-Ni2Si with only a few γ-NisSi2 phase particles, which agrees well with the thermodynamic calculations of phase equilibria.
ISSN:1003-6326