Loading…
Sharp L2 Boundedness of Transform the Oscillatory Hyper-Hilbert along Curves
Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that H n,α,β is bounded on L2 if and only if β ≥ (n + 1)α. Our work extends and improves some known results....
Saved in:
Published in: | Acta mathematica Sinica. English series 2010 (4), p.653-658 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that H n,α,β is bounded on L2 if and only if β ≥ (n + 1)α. Our work extends and improves some known results. |
---|---|
ISSN: | 1439-8516 1439-7617 |