Loading…
A 9× 9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System
We present a 9 × 9 S-matrix and E-matrix. A representation of specialized Birman-Wenzl-Murakami algebra is obtained. Starting from the given braid group representation S-matrix, we obtain the trigonometric solution of Yang-Baxter equation. A unitary matrix R(x, φ1, φ2) is generated via the Yang Baxt...
Saved in:
Published in: | Communications in theoretical physics 2011-02, Vol.55 (2), p.263-267, Article 263 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c224t-529fecdfe02f126103354e38323d5ef5a250c92abdd6ea2163e91fc9f54b19053 |
---|---|
cites | cdi_FETCH-LOGICAL-c224t-529fecdfe02f126103354e38323d5ef5a250c92abdd6ea2163e91fc9f54b19053 |
container_end_page | 267 |
container_issue | 2 |
container_start_page | 263 |
container_title | Communications in theoretical physics |
container_volume | 55 |
creator | 苟立丹 薛康 王刚成 |
description | We present a 9 × 9 S-matrix and E-matrix. A representation of specialized Birman-Wenzl-Murakami algebra is obtained. Starting from the given braid group representation S-matrix, we obtain the trigonometric solution of Yang-Baxter equation. A unitary matrix R(x, φ1, φ2) is generated via the Yang Baxterization approach. Then we construct a Yang-Baxter Hamiltonian through the unitary matrix R(x, φ1, φ2). Berry phase of this Yang-Baxter system is investigated in detail. |
doi_str_mv | 10.1088/0253-6102/55/2/14 |
format | article |
fullrecord | <record><control><sourceid>iop_chong</sourceid><recordid>TN_cdi_chongqing_backfile_37190014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37190014</cqvip_id><sourcerecordid>10_1088_0253_6102_55_2_14</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-529fecdfe02f126103354e38323d5ef5a250c92abdd6ea2163e91fc9f54b19053</originalsourceid><addsrcrecordid>eNqNkMlOwzAQhnMAiVJ4AG4WZ0K8xGlzbCs2qRWIRYiTNUnGqWniFDtILS_CA_FipGrFgQPiNNJovvmXIDhh9JzR4TCiXIowYZRHUkY8YvFe0PvZHQSH3r9SSvkgYb2gGJH065OkZAatMytyj0uHHm0LrWksaTQZG1eDDZ_RflTh7N3BAmpDRlWJmQMCtiBjdG5N7ubgkRhLXsCW4RhWLTrysPYt1kfBvobK4_Fu9oOny4vHyXU4vb26mYymYc553IaSpxrzQiPlmvHOrBAyRjEUXBQStQQuaZ5yyIoiQeAsEZgynadaxhlLqRT9gG3_5q7x3qFWS2dqcGvFqNpUozY1qE0NSkrFFYs7ZvCLyc02fOvAVH-SZ1vSNMt_CZ3uhOaNLd-MLVUG-UKbCpUYdP5pd_QNIt2Cyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A 9× 9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>苟立丹 薛康 王刚成</creator><creatorcontrib>苟立丹 薛康 王刚成</creatorcontrib><description>We present a 9 × 9 S-matrix and E-matrix. A representation of specialized Birman-Wenzl-Murakami algebra is obtained. Starting from the given braid group representation S-matrix, we obtain the trigonometric solution of Yang-Baxter equation. A unitary matrix R(x, φ1, φ2) is generated via the Yang Baxterization approach. Then we construct a Yang-Baxter Hamiltonian through the unitary matrix R(x, φ1, φ2). Berry phase of this Yang-Baxter system is investigated in detail.</description><identifier>ISSN: 0253-6102</identifier><identifier>DOI: 10.1088/0253-6102/55/2/14</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Berry相 ; 上代数 ; 代数表达式 ; 矩阵和 ; 矩阵表示 ; 辫子群表示 ; 酉矩阵</subject><ispartof>Communications in theoretical physics, 2011-02, Vol.55 (2), p.263-267, Article 263</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-529fecdfe02f126103354e38323d5ef5a250c92abdd6ea2163e91fc9f54b19053</citedby><cites>FETCH-LOGICAL-c224t-529fecdfe02f126103354e38323d5ef5a250c92abdd6ea2163e91fc9f54b19053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83837X/83837X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>苟立丹 薛康 王刚成</creatorcontrib><title>A 9× 9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System</title><title>Communications in theoretical physics</title><addtitle>Communications in Theoretical Physics</addtitle><description>We present a 9 × 9 S-matrix and E-matrix. A representation of specialized Birman-Wenzl-Murakami algebra is obtained. Starting from the given braid group representation S-matrix, we obtain the trigonometric solution of Yang-Baxter equation. A unitary matrix R(x, φ1, φ2) is generated via the Yang Baxterization approach. Then we construct a Yang-Baxter Hamiltonian through the unitary matrix R(x, φ1, φ2). Berry phase of this Yang-Baxter system is investigated in detail.</description><subject>Berry相</subject><subject>上代数</subject><subject>代数表达式</subject><subject>矩阵和</subject><subject>矩阵表示</subject><subject>辫子群表示</subject><subject>酉矩阵</subject><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkMlOwzAQhnMAiVJ4AG4WZ0K8xGlzbCs2qRWIRYiTNUnGqWniFDtILS_CA_FipGrFgQPiNNJovvmXIDhh9JzR4TCiXIowYZRHUkY8YvFe0PvZHQSH3r9SSvkgYb2gGJH065OkZAatMytyj0uHHm0LrWksaTQZG1eDDZ_RflTh7N3BAmpDRlWJmQMCtiBjdG5N7ubgkRhLXsCW4RhWLTrysPYt1kfBvobK4_Fu9oOny4vHyXU4vb26mYymYc553IaSpxrzQiPlmvHOrBAyRjEUXBQStQQuaZ5yyIoiQeAsEZgynadaxhlLqRT9gG3_5q7x3qFWS2dqcGvFqNpUozY1qE0NSkrFFYs7ZvCLyc02fOvAVH-SZ1vSNMt_CZ3uhOaNLd-MLVUG-UKbCpUYdP5pd_QNIt2Cyg</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>苟立丹 薛康 王刚成</creator><general>IOP Publishing</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201102</creationdate><title>A 9× 9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System</title><author>苟立丹 薛康 王刚成</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-529fecdfe02f126103354e38323d5ef5a250c92abdd6ea2163e91fc9f54b19053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Berry相</topic><topic>上代数</topic><topic>代数表达式</topic><topic>矩阵和</topic><topic>矩阵表示</topic><topic>辫子群表示</topic><topic>酉矩阵</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>苟立丹 薛康 王刚成</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Communications in theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>苟立丹 薛康 王刚成</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 9× 9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System</atitle><jtitle>Communications in theoretical physics</jtitle><addtitle>Communications in Theoretical Physics</addtitle><date>2011-02</date><risdate>2011</risdate><volume>55</volume><issue>2</issue><spage>263</spage><epage>267</epage><pages>263-267</pages><artnum>263</artnum><issn>0253-6102</issn><abstract>We present a 9 × 9 S-matrix and E-matrix. A representation of specialized Birman-Wenzl-Murakami algebra is obtained. Starting from the given braid group representation S-matrix, we obtain the trigonometric solution of Yang-Baxter equation. A unitary matrix R(x, φ1, φ2) is generated via the Yang Baxterization approach. Then we construct a Yang-Baxter Hamiltonian through the unitary matrix R(x, φ1, φ2). Berry phase of this Yang-Baxter system is investigated in detail.</abstract><pub>IOP Publishing</pub><doi>10.1088/0253-6102/55/2/14</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-6102 |
ispartof | Communications in theoretical physics, 2011-02, Vol.55 (2), p.263-267, Article 263 |
issn | 0253-6102 |
language | eng |
recordid | cdi_chongqing_backfile_37190014 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Berry相 上代数 代数表达式 矩阵和 矩阵表示 辫子群表示 酉矩阵 |
title | A 9× 9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-iop_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%209%C3%97%209%20Matrix%20Representation%20of%20Birman-Wenzl-Murakami%20Algebra%20and%20Berry%20Phase%20in%20Yang-Baxter%20System&rft.jtitle=Communications%20in%20theoretical%20physics&rft.au=%E8%8B%9F%E7%AB%8B%E4%B8%B9%20%E8%96%9B%E5%BA%B7%20%E7%8E%8B%E5%88%9A%E6%88%90&rft.date=2011-02&rft.volume=55&rft.issue=2&rft.spage=263&rft.epage=267&rft.pages=263-267&rft.artnum=263&rft.issn=0253-6102&rft_id=info:doi/10.1088/0253-6102/55/2/14&rft_dat=%3Ciop_chong%3E10_1088_0253_6102_55_2_14%3C/iop_chong%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c224t-529fecdfe02f126103354e38323d5ef5a250c92abdd6ea2163e91fc9f54b19053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=37190014&rfr_iscdi=true |