Loading…

COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana Contributes to Abscisic Acid- and Polyamine-lnduced Nitric Oxide Biosynthesis and Abscisic Acid Signal Transduction

Polyamines (PA), polyamine oxidases, copper amine oxidases, and nitric oxide (NO) play important roles in physiology and stress responses in plants. NO biosynthesis as a result of catabolism of PA by polyamine oxidases and copper amine oxidases may explain in part PA-mediated responses. Involvement...

Full description

Saved in:
Bibliographic Details
Published in:分子植物 2011, Vol.4 (4), p.663-678
Main Author: Rinukshi Wimalasekera Corina Villar Tahmina Begum Giinther F. E. Scherer
Format: Article
Language:Chinese
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polyamines (PA), polyamine oxidases, copper amine oxidases, and nitric oxide (NO) play important roles in physiology and stress responses in plants. NO biosynthesis as a result of catabolism of PA by polyamine oxidases and copper amine oxidases may explain in part PA-mediated responses. Involvement of a copper amine oxidase gene, COPPER AMINE OXIDASEI (CuAO1), of Arabidopsis was tested for its role in stress responses using the knockouts cuao1-1 and cuaol-2. PA-induced and ABA-induced NO production investigated bY fluorometry and fluorescence microscopy showed that the cuaol-1 and cuaol-2 are impaired in NO production, suggesting a function of CuAO1 in PA and ABA-mediated NO production. Furthermore, we found a PA-dependent increase in protein S-nitrosylation. The addition of PA and ABA also resulted in H2O2 increases, cuao1-1 and cuao1-2 showed less sensitivity to exogenous ABA supplementation during germination, seedling establishment, and root growth inhibition as compared to wild-type. In response to ABA t
ISSN:1674-2052
1752-9867