Loading…
COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis thaliana Contributes to Abscisic Acid- and Polyamine-lnduced Nitric Oxide Biosynthesis and Abscisic Acid Signal Transduction
Polyamines (PA), polyamine oxidases, copper amine oxidases, and nitric oxide (NO) play important roles in physiology and stress responses in plants. NO biosynthesis as a result of catabolism of PA by polyamine oxidases and copper amine oxidases may explain in part PA-mediated responses. Involvement...
Saved in:
Published in: | 分子植物 2011, Vol.4 (4), p.663-678 |
---|---|
Main Author: | |
Format: | Article |
Language: | Chinese |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polyamines (PA), polyamine oxidases, copper amine oxidases, and nitric oxide (NO) play important roles in physiology and stress responses in plants. NO biosynthesis as a result of catabolism of PA by polyamine oxidases and copper amine oxidases may explain in part PA-mediated responses. Involvement of a copper amine oxidase gene, COPPER AMINE OXIDASEI (CuAO1), of Arabidopsis was tested for its role in stress responses using the knockouts cuao1-1 and cuaol-2. PA-induced and ABA-induced NO production investigated bY fluorometry and fluorescence microscopy showed that the cuaol-1 and cuaol-2 are impaired in NO production, suggesting a function of CuAO1 in PA and ABA-mediated NO production. Furthermore, we found a PA-dependent increase in protein S-nitrosylation. The addition of PA and ABA also resulted in H2O2 increases, cuao1-1 and cuao1-2 showed less sensitivity to exogenous ABA supplementation during germination, seedling establishment, and root growth inhibition as compared to wild-type. In response to ABA t |
---|---|
ISSN: | 1674-2052 1752-9867 |