Loading…

A cryogenic SAR ADC for infrared readout circuits

comparatorAbstract: A cryogenic successive approximation register (SAR) analog to digital converter (ADC) is presented. It has been designed to operate in cryogenic infrared readout systems as they are cooled from room temperature to their final cryogenic operation temperature. In order to preserve...

Full description

Saved in:
Bibliographic Details
Published in:Journal of semiconductors 2011-11, Vol.32 (11), p.152-156
Main Author: 赵宏亮 赵毅强 张之圣
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:comparatorAbstract: A cryogenic successive approximation register (SAR) analog to digital converter (ADC) is presented. It has been designed to operate in cryogenic infrared readout systems as they are cooled from room temperature to their final cryogenic operation temperature. In order to preserve the circuit's performance over this wide temperature range, a temperature-compensated time-based comparator architecture is used in the ADC, which provides a steady performance with ultra low power for extreme temperature (from room temperature down to 77 K) operation. The converter implemented in a standard 0.35 μm CMOS process exhibits 0.64 LSB maximum differential nonlinearity (DNL) and 0.59 LSB maximum integral nonlinearity (1NL). It achieves 9.3 bit effective number of bits (ENOB) with 200 kS/s sampling rate at 77 K, dissipating 0.23 mW under 3.3 V supply voltage and occupies 0.8 × 0.3 mm^2.
ISSN:1674-4926
DOI:10.1088/1674-4926/32/11/115015