Loading…
Focusing a beam beyond the diffraction limit using a hyperlens-based device
A super-focusing device composed of a focusing objective and a hyperlens is proposed to focus an incident plane wave into the deep subwavelength dimension. In the device, the objective converts the incident plane wave into a convergent one. The half cylindrical hyperlens can support high wave vector...
Saved in:
Published in: | Chinese physics B 2011-11, Vol.20 (11), p.506-511, Article 117802 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A super-focusing device composed of a focusing objective and a hyperlens is proposed to focus an incident plane wave into the deep subwavelength dimension. In the device, the objective converts the incident plane wave into a convergent one. The half cylindrical hyperlens can support high wave vector k modes propagating towards its core. So the convergent wave can be focused into an ultrasmall spot beyond the diffraction limit. The layout is proposed for the super-focusing device and its characteristics are investigated theoretically. Numerical simulations verify that the focused beams are confined in a spot with a diameter of 16.3 nm in the focal plane of the focusing objective with a numerical aperture of 0.6, which corresponds to a super-resolution spot of λ0/23 (λ0 is the wavelength in vacuum). The simulations confirm the effectiveness of the proposed device. |
---|---|
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/20/11/117802 |