Loading…

Investigations on hydrogen storage properties of LaMg8.52Ni2.23M0.15 (M=Ni, Cu, Cr) alloys

LaMg8.52Ni2.23M0.15 (M=Ni, Cu, Cr) alloys were prepared by induction melting. X-ray diffraction showed that all the three alloys had a multiphase structure, consisting of La2Mg17, LaMg2Ni and Mg2Ni phases. Energy dispersive X-ray spectrometer results revealed that most of Cu and Cr distributed in Mg...

Full description

Saved in:
Bibliographic Details
Published in:中国稀土学报:英文版 2013, Vol.31 (1), p.79-84
Main Author: 石和 韩树民 贾彦虹 刘岩青 赵鑫 刘宝忠
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:LaMg8.52Ni2.23M0.15 (M=Ni, Cu, Cr) alloys were prepared by induction melting. X-ray diffraction showed that all the three alloys had a multiphase structure, consisting of La2Mg17, LaMg2Ni and Mg2Ni phases. Energy dispersive X-ray spectrometer results revealed that most of Cu and Cr distributed in MgzNi phase. La2Mg17 and LaMg2Ni phases decomposed into MgHz, Mg2NiH4 and LaH3 phases during the hydrogenation process. Hydriding/dehydriding measurements indicated that the reversible hydrogen storage capacities of Mg2Ni phase in LaMgs.52Ni2.23M0.15 (M=Cu, Cr) alloys increased to 1.05 wt.% and 0.97 wt.% from 0.79 wt.% of Mg2Ni phase in LaMgs.52Ni2.38 alloy at 523 K. Partial substitution of Cu and Cr for Ni decreased the onset dehydrogenation temperature of the alloy hydrides and the temperature lowered by 18.20 and 5.50 K, respectively. The improvement in the dehydrogenation property of the alloys was attributed to that Cu and Cr decreased the stability of Mg2NiH4 phase.
ISSN:1002-0721
2509-4963