Loading…

Microwave firing-incubation of cage-like (Ba,Sr)3MgSi2O8:0.06Eu2+,0.1Mn2+ sphere from sprayed template-free xerogel particles

Morphology control of cage-like (Ba,Sr)3MgSi2O8:Eu,Mn luminous sphere in micrometer size with a simultaneous 660 nm/430 nm-featured band emission was investigated via microwave (MW) firing procedure. A firing temperature range associated with distinct reaction of xerogel particles was determined by...

Full description

Saved in:
Bibliographic Details
Published in:中国稀土学报:英文版 2013, Vol.31 (6), p.541-545
Main Author: 王龄昌 陆启飞 李建 林承菓 曹利生 王达健
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Morphology control of cage-like (Ba,Sr)3MgSi2O8:Eu,Mn luminous sphere in micrometer size with a simultaneous 660 nm/430 nm-featured band emission was investigated via microwave (MW) firing procedure. A firing temperature range associated with distinct reaction of xerogel particles was determined by thermal analysis, at which the pure host phase of (Ba,Sr)3MgSi2O8 was formed and the release of decomposed gas from the precipitated nitrates played a key role in controlling the multi-scale structured morphology. As-prepared Ba1.14Sr1.7MgSi2O8:0.06Eu2+,0.1Mn2+ samples featured in a band emission simultaneously emitting at both 660 and 430 nm under 350 nm light excitation by MW procedure with an enhancement emission compared to the sample by solid state procedure. The results suggested that MW firing procedure affected assembling cage-like particle in meso-, nano- and submicro- meters to achieve photoluminescence (PL) enhancement of the simultaneous red/blue emission.
ISSN:1002-0721
2509-4963