Loading…

The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method

This paper reports on the effects of film thickness and doping content on the optical and electrical properties of fluorine-doped tin oxide. Tin (Ⅱ) chloride dehydrate, ammonium fluoride dehydrate, ethanol and HC1 were used as the starting materials, dopant source, solvent and stabilizer, respective...

Full description

Saved in:
Bibliographic Details
Published in:半导体学报:英文版 2013-09 (9), p.21-25
Main Author: Achour Rahal Said Benramache Boubaker Benhaoua
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper reports on the effects of film thickness and doping content on the optical and electrical properties of fluorine-doped tin oxide. Tin (Ⅱ) chloride dehydrate, ammonium fluoride dehydrate, ethanol and HC1 were used as the starting materials, dopant source, solvent and stabilizer, respectively. The doped films were deposited on a glass substrate at different concentrations varying between 0 and 5 wt% using an ultrasonic spray technique. The SnO2:F thin films were deposited at a 350 ℃ pending time (5, 15, 60 and 90 s). The average transmission was about 80%, and the films were thus transparent in the visible region. The optical energy gap of the doped films with 2.5 wt% F was found to increase from 3.47 to 3.89 eV with increasing film thickness, and increased after doping at 5 wt%. The decrease in the Urbach energy of the SnO2:F thin films indicated a decrease in the defects. The increase in the electrical conductivity of the films reached maximum values of 278.9 and 281.9 (Ω.cm)-1 for 2.5 and 5 wt% F, respectively, indicating that the films exhibited an n-type semiconducting nature. A systematic study on the influence of film thickness and doping content on the properties of SnO2:F thin films deposited by ultrasonic spray was reported.
ISSN:1674-4926
DOI:10.1088/1674-4926/34/9/093003