Loading…
Effect of Molecular Weight of PEG Soft Segments on Photo-stimulated Selfhealing Performance of Coumarin Functionalized Polyurethanes
Polyurethanes consisting of tri-functional homopolymer of hexamethylene diisocyanate (tri-HDI) and polyethylene glycol (PEG) are synthesized, in which photo-reversible coumarin moieties act as pendant groups. Accordingly, the polyurethanes can be repeatedly self-healed under UV lights at room temper...
Saved in:
Published in: | 高分子科学:英文版 2014 (10), p.1286-1297 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polyurethanes consisting of tri-functional homopolymer of hexamethylene diisocyanate (tri-HDI) and polyethylene glycol (PEG) are synthesized, in which photo-reversible coumarin moieties act as pendant groups. Accordingly, the polyurethanes can be repeatedly self-healed under UV lights at room temperature by taking advantages of the photodimerization and photocleavage habits of coumarin. Molecular weight of the soft segment, PEG, is found to be closely related to the healing performance of the polyurethanes. Lower molecular weight PEG that corresponds to higher initial coumarin concentration in the polymer is critical for obtaining higher healing efficiency in the case of the first healing action. Nevertheless, it does not guarantee high reversibility of the photo-remendability during the repeated healing events. In contrast, the polyurethane with moderate molecular weight PEG has achieved balanced performance. Reaction kinetics is less important for the healing effect. |
---|---|
ISSN: | 0256-7679 1439-6203 |