Loading…
Molecular Cloning, Expression Pattern, and 3D Structural Prediction of the Cold Inducible RNA - Binding Protein (CIRP) in Japanese Flounder (Paralichthys olivaceus)
Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this st...
Saved in:
Published in: | 中国海洋大学学报:英文版 2015 (1), p.161-170 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the PoCIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative PoCIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif (RRM). Phylogenetic analysis showed that the flounder PoCIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were iden- tified. There is a CpGs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that PoCIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The mRNA of the PoCIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neu- rula stages. In order to gain the information how the protein interacts with mRNA, we performed the modeling of the 3D structure of the flounder PoCIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function. |
---|---|
ISSN: | 1672-5182 1993-5021 |