Loading…

The Wronskian technique for nonlinear evolution equationst

The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian techni...

Full description

Saved in:
Bibliographic Details
Published in:中国物理B:英文版 2016 (1), p.514-519
Main Author: 成建军 张鸿庆
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 519
container_issue 1
container_start_page 514
container_title 中国物理B:英文版
container_volume
creator 成建军 张鸿庆
description The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.
format article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_667241360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>667241360</cqvip_id><sourcerecordid>667241360</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6672413603</originalsourceid><addsrcrecordid>eNqNytEKwiAUgGGJgmz1DtL9QOfmRrdR9ACDLoeMs2mtY-oMevsIeoCu_u_iXxBa8KrJZSPLJaFC1WUueKXWZBPjjXMleCEpObQG2DU4jHerkc3QG7Q-ARtcYOhwsgg6MHi5Kc3WIQOf9Bdx3pLVoKcIu18zsj-f2uMl743D0Vscu2ewDx3enVJ1UQqpuPxr-gCE8zgi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Wronskian technique for nonlinear evolution equationst</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>成建军 张鸿庆</creator><creatorcontrib>成建军 张鸿庆</creatorcontrib><description>The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><language>eng</language><subject>双线性形式 ; 多孤子解 ; 技术 ; 物理现象 ; 精确行波解 ; 线性微分系统 ; 非线性演化方程</subject><ispartof>中国物理B:英文版, 2016 (1), p.514-519</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>成建军 张鸿庆</creatorcontrib><title>The Wronskian technique for nonlinear evolution equationst</title><title>中国物理B:英文版</title><addtitle>Chinese Physics</addtitle><description>The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.</description><subject>双线性形式</subject><subject>多孤子解</subject><subject>技术</subject><subject>物理现象</subject><subject>精确行波解</subject><subject>线性微分系统</subject><subject>非线性演化方程</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNytEKwiAUgGGJgmz1DtL9QOfmRrdR9ACDLoeMs2mtY-oMevsIeoCu_u_iXxBa8KrJZSPLJaFC1WUueKXWZBPjjXMleCEpObQG2DU4jHerkc3QG7Q-ARtcYOhwsgg6MHi5Kc3WIQOf9Bdx3pLVoKcIu18zsj-f2uMl743D0Vscu2ewDx3enVJ1UQqpuPxr-gCE8zgi</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>成建军 张鸿庆</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2016</creationdate><title>The Wronskian technique for nonlinear evolution equationst</title><author>成建军 张鸿庆</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6672413603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>双线性形式</topic><topic>多孤子解</topic><topic>技术</topic><topic>物理现象</topic><topic>精确行波解</topic><topic>线性微分系统</topic><topic>非线性演化方程</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>成建军 张鸿庆</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国物理B:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>成建军 张鸿庆</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Wronskian technique for nonlinear evolution equationst</atitle><jtitle>中国物理B:英文版</jtitle><addtitle>Chinese Physics</addtitle><date>2016</date><risdate>2016</risdate><issue>1</issue><spage>514</spage><epage>519</epage><pages>514-519</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof 中国物理B:英文版, 2016 (1), p.514-519
issn 1674-1056
2058-3834
language eng
recordid cdi_chongqing_primary_667241360
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects 双线性形式
多孤子解
技术
物理现象
精确行波解
线性微分系统
非线性演化方程
title The Wronskian technique for nonlinear evolution equationst
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Wronskian%20technique%20for%20nonlinear%20evolution%20equationst&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%88%90%E5%BB%BA%E5%86%9B%20%E5%BC%A0%E9%B8%BF%E5%BA%86&rft.date=2016&rft.issue=1&rft.spage=514&rft.epage=519&rft.pages=514-519&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/&rft_dat=%3Cchongqing%3E667241360%3C/chongqing%3E%3Cgrp_id%3Ecdi_FETCH-chongqing_primary_6672413603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=667241360&rfr_iscdi=true