Loading…
The Wronskian technique for nonlinear evolution equationst
The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian techni...
Saved in:
Published in: | 中国物理B:英文版 2016 (1), p.514-519 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 519 |
container_issue | 1 |
container_start_page | 514 |
container_title | 中国物理B:英文版 |
container_volume | |
creator | 成建军 张鸿庆 |
description | The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions. |
format | article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_667241360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>667241360</cqvip_id><sourcerecordid>667241360</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6672413603</originalsourceid><addsrcrecordid>eNqNytEKwiAUgGGJgmz1DtL9QOfmRrdR9ACDLoeMs2mtY-oMevsIeoCu_u_iXxBa8KrJZSPLJaFC1WUueKXWZBPjjXMleCEpObQG2DU4jHerkc3QG7Q-ARtcYOhwsgg6MHi5Kc3WIQOf9Bdx3pLVoKcIu18zsj-f2uMl743D0Vscu2ewDx3enVJ1UQqpuPxr-gCE8zgi</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Wronskian technique for nonlinear evolution equationst</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>成建军 张鸿庆</creator><creatorcontrib>成建军 张鸿庆</creatorcontrib><description>The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><language>eng</language><subject>双线性形式 ; 多孤子解 ; 技术 ; 物理现象 ; 精确行波解 ; 线性微分系统 ; 非线性演化方程</subject><ispartof>中国物理B:英文版, 2016 (1), p.514-519</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>成建军 张鸿庆</creatorcontrib><title>The Wronskian technique for nonlinear evolution equationst</title><title>中国物理B:英文版</title><addtitle>Chinese Physics</addtitle><description>The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.</description><subject>双线性形式</subject><subject>多孤子解</subject><subject>技术</subject><subject>物理现象</subject><subject>精确行波解</subject><subject>线性微分系统</subject><subject>非线性演化方程</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNytEKwiAUgGGJgmz1DtL9QOfmRrdR9ACDLoeMs2mtY-oMevsIeoCu_u_iXxBa8KrJZSPLJaFC1WUueKXWZBPjjXMleCEpObQG2DU4jHerkc3QG7Q-ARtcYOhwsgg6MHi5Kc3WIQOf9Bdx3pLVoKcIu18zsj-f2uMl743D0Vscu2ewDx3enVJ1UQqpuPxr-gCE8zgi</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>成建军 张鸿庆</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2016</creationdate><title>The Wronskian technique for nonlinear evolution equationst</title><author>成建军 张鸿庆</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6672413603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>双线性形式</topic><topic>多孤子解</topic><topic>技术</topic><topic>物理现象</topic><topic>精确行波解</topic><topic>线性微分系统</topic><topic>非线性演化方程</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>成建军 张鸿庆</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>中国物理B:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>成建军 张鸿庆</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Wronskian technique for nonlinear evolution equationst</atitle><jtitle>中国物理B:英文版</jtitle><addtitle>Chinese Physics</addtitle><date>2016</date><risdate>2016</risdate><issue>1</issue><spage>514</spage><epage>519</epage><pages>514-519</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>The investigation of the exact traveling wave solutions to the nonlinear evolution equations plays an important role in the study of nonlinear physical phenomena. To understand the mechanisms of those physical phenomena, it is necessary to explore their solutions and properties. The Wronskian technique is a powerful tool to construct multi-soliton solutions for many nonlinear evolution equations possessing Hirota bilinear forms. In the process of utilizing the Wronskian technique, the main difficulty lies in the construction of a system of linear differential conditions, which is not unique. In this paper, we give a universal method to construct a system of linear differential conditions.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | 中国物理B:英文版, 2016 (1), p.514-519 |
issn | 1674-1056 2058-3834 |
language | eng |
recordid | cdi_chongqing_primary_667241360 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | 双线性形式 多孤子解 技术 物理现象 精确行波解 线性微分系统 非线性演化方程 |
title | The Wronskian technique for nonlinear evolution equationst |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Wronskian%20technique%20for%20nonlinear%20evolution%20equationst&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%88%90%E5%BB%BA%E5%86%9B%20%E5%BC%A0%E9%B8%BF%E5%BA%86&rft.date=2016&rft.issue=1&rft.spage=514&rft.epage=519&rft.pages=514-519&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/&rft_dat=%3Cchongqing%3E667241360%3C/chongqing%3E%3Cgrp_id%3Ecdi_FETCH-chongqing_primary_6672413603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=667241360&rfr_iscdi=true |