Loading…

Cosmic Constraints to the wCDM Model from Strong Gravitational Lensing

We study the cosmic constraint to the wCDM (cold dark matter with a constant equation of state w) model via 118 strong gravitational lensing systems which are compiled from SLA CS, BELLS, LSD and SL2S surveys, where the ratio between two angular diameter distances Dobs =DA(Zl, Zs ) / D A ( O, Zs ) i...

Full description

Saved in:
Bibliographic Details
Published in:中国物理快报:英文版 2016-07 (7), p.191-195
Main Author: Jie An Bao-Rong Chang Li-Xin Xu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the cosmic constraint to the wCDM (cold dark matter with a constant equation of state w) model via 118 strong gravitational lensing systems which are compiled from SLA CS, BELLS, LSD and SL2S surveys, where the ratio between two angular diameter distances Dobs =DA(Zl, Zs ) / D A ( O, Zs ) is taken as a cosmic observable. To obtain this ratio, we adopt two strong tensing models: one is the singular isothermal sphere model (SIS) and the other one is the power-law density profile (PLP) model. Via the Markov chain Monte Carlo method, the posterior distribution of the cosmological model parameters space is obtained. The results show that the cosmological model parameters are not sensitive to the parameterized forms of the power-law index γ. Furthermore, the PLP model gives a relatively tighter constraint to the cosmological parameters than that of the SIS model. The predicted value of Ωm = 0.31+0.44 -0.24 by the SIS model is compatible with that obtained by P1anck2015: Ωm = 0.313 ± 0.013. However, the value of Ωm =0.15+0.13 -0.11 based on the PLP model is smaller and has 1.25σ tension with that obtained by Planck2015.
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/33/7/079801