Loading…

Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na_3Bi from angle-resolved photoemission spectroscopy

The three-dimensional(3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experiment...

Full description

Saved in:
Bibliographic Details
Published in:中国物理B:英文版 2016 (7), p.76-88
Main Author: 梁爱基 陈朝宇 王志俊 石友国 冯娅 伊合绵 谢卓晋 何少龙 何俊峰 彭莹莹 刘艳 刘德发 胡成 赵林 刘国东 董晓莉 张君 M Nakatake H Iwasawa K Shimad M Arita H Namatame M Taniguchi 许祖彦 陈创天 翁红明 戴希 方忠 周兴江
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The three-dimensional(3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A3Bi(A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission(ARPES) measurements on the two cleaved surfaces,(001) and(100), of Na3Bi. On the(001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the kx–ky plane and by varying the photon energy to get access to different out-of-plane kzs. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the(100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the(100) plane. We directly observe two isolated 3D Dirac nodes on the(100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ~150 me V before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the3 D Dirac cones, on the possible formation of surface reconstruction of the(001) surface, and on the issue of basic Brillouin zone selection for the(100) surface.
ISSN:1674-1056
2058-3834