Loading…

Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production

The design of efficient artificial photosynthetic systems that harvest solar energy to drive the hydrogen evolution reaction via water reduction is of great importance from both the theoretical and practical viewpoints. Integrating appropriate co-catalyst promoters with strong light absorbing materi...

Full description

Saved in:
Bibliographic Details
Published in:纳米研究:英文版 2016 (8), p.2284-2293
Main Author: Xiaoyan Ma Jinquan Li Changhua An Juan Feng Yuhua Chi Junxue Liu Jun Zhang Yugang Sun
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2293
container_issue 8
container_start_page 2284
container_title 纳米研究:英文版
container_volume
creator Xiaoyan Ma Jinquan Li Changhua An Juan Feng Yuhua Chi Junxue Liu Jun Zhang Yugang Sun
description The design of efficient artificial photosynthetic systems that harvest solar energy to drive the hydrogen evolution reaction via water reduction is of great importance from both the theoretical and practical viewpoints. Integrating appropriate co-catalyst promoters with strong light absorbing materials represents an ideal strategy to enhance the conversion efficiency of solar energy in hydrogen production. Herein, we report, for the first time, the synthesis of a class of unique hybrid structures consisting of ultrathin Co(Ni)-doped MoS2 nanosheets (co-catalyst promoter) intimately grown on semiconductor CdS nanorods (light absorber). The as-synthesized one-dimensional CdS@doped-MoS2 heterostructures exhibited very high photocatalytic activity (with a quantum yield of 17.3%) and stability towards H2 evolution from the photoreduction of water. Theoretical calculations revealed that Ni doping can increase the number of uncoordinated atoms at the edge sites of MoS2 nanosheets to promote electron transfer across the CdS/MoS2 interfaces as well as hydrogen reduction, leading to an efficient H2 evolution reaction.
format article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_669508254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669508254</cqvip_id><sourcerecordid>669508254</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6695082543</originalsourceid><addsrcrecordid>eNqNjDFuwkAQRVcoSBDgDiN6S7Yxll0jEE3ShNRoWI_tRcuM2V0K3wDuxJ24QogU-vzmveLpD9Q4Kcsiip97e3mSZiP17v0xjvM0yYqx4m8bHIbWMKzkcb9-msf9FlXSUQUf8pUCI4tviYIH9KAxoO2D0dA5OUkg54EYD9ZwA1TXRhviAF4sOmj7yklD_NtWFx2M8FQNa7SeZn-cqPlmvVttI90KN-fny75z5oSu3-d5uYyLdJkt_hX9AKHYTZ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production</title><source>Springer Link</source><creator>Xiaoyan Ma Jinquan Li Changhua An Juan Feng Yuhua Chi Junxue Liu Jun Zhang Yugang Sun</creator><creatorcontrib>Xiaoyan Ma Jinquan Li Changhua An Juan Feng Yuhua Chi Junxue Liu Jun Zhang Yugang Sun</creatorcontrib><description>The design of efficient artificial photosynthetic systems that harvest solar energy to drive the hydrogen evolution reaction via water reduction is of great importance from both the theoretical and practical viewpoints. Integrating appropriate co-catalyst promoters with strong light absorbing materials represents an ideal strategy to enhance the conversion efficiency of solar energy in hydrogen production. Herein, we report, for the first time, the synthesis of a class of unique hybrid structures consisting of ultrathin Co(Ni)-doped MoS2 nanosheets (co-catalyst promoter) intimately grown on semiconductor CdS nanorods (light absorber). The as-synthesized one-dimensional CdS@doped-MoS2 heterostructures exhibited very high photocatalytic activity (with a quantum yield of 17.3%) and stability towards H2 evolution from the photoreduction of water. Theoretical calculations revealed that Ni doping can increase the number of uncoordinated atoms at the edge sites of MoS2 nanosheets to promote electron transfer across the CdS/MoS2 interfaces as well as hydrogen reduction, leading to an efficient H2 evolution reaction.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><language>eng</language><ispartof>纳米研究:英文版, 2016 (8), p.2284-2293</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><link.rule.ids>314,780,784,4021</link.rule.ids></links><search><creatorcontrib>Xiaoyan Ma Jinquan Li Changhua An Juan Feng Yuhua Chi Junxue Liu Jun Zhang Yugang Sun</creatorcontrib><title>Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production</title><title>纳米研究:英文版</title><addtitle>Nano Research</addtitle><description>The design of efficient artificial photosynthetic systems that harvest solar energy to drive the hydrogen evolution reaction via water reduction is of great importance from both the theoretical and practical viewpoints. Integrating appropriate co-catalyst promoters with strong light absorbing materials represents an ideal strategy to enhance the conversion efficiency of solar energy in hydrogen production. Herein, we report, for the first time, the synthesis of a class of unique hybrid structures consisting of ultrathin Co(Ni)-doped MoS2 nanosheets (co-catalyst promoter) intimately grown on semiconductor CdS nanorods (light absorber). The as-synthesized one-dimensional CdS@doped-MoS2 heterostructures exhibited very high photocatalytic activity (with a quantum yield of 17.3%) and stability towards H2 evolution from the photoreduction of water. Theoretical calculations revealed that Ni doping can increase the number of uncoordinated atoms at the edge sites of MoS2 nanosheets to promote electron transfer across the CdS/MoS2 interfaces as well as hydrogen reduction, leading to an efficient H2 evolution reaction.</description><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNjDFuwkAQRVcoSBDgDiN6S7Yxll0jEE3ShNRoWI_tRcuM2V0K3wDuxJ24QogU-vzmveLpD9Q4Kcsiip97e3mSZiP17v0xjvM0yYqx4m8bHIbWMKzkcb9-msf9FlXSUQUf8pUCI4tviYIH9KAxoO2D0dA5OUkg54EYD9ZwA1TXRhviAF4sOmj7yklD_NtWFx2M8FQNa7SeZn-cqPlmvVttI90KN-fny75z5oSu3-d5uYyLdJkt_hX9AKHYTZ4</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Xiaoyan Ma Jinquan Li Changhua An Juan Feng Yuhua Chi Junxue Liu Jun Zhang Yugang Sun</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2016</creationdate><title>Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production</title><author>Xiaoyan Ma Jinquan Li Changhua An Juan Feng Yuhua Chi Junxue Liu Jun Zhang Yugang Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6695082543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaoyan Ma Jinquan Li Changhua An Juan Feng Yuhua Chi Junxue Liu Jun Zhang Yugang Sun</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>纳米研究:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaoyan Ma Jinquan Li Changhua An Juan Feng Yuhua Chi Junxue Liu Jun Zhang Yugang Sun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production</atitle><jtitle>纳米研究:英文版</jtitle><addtitle>Nano Research</addtitle><date>2016</date><risdate>2016</risdate><issue>8</issue><spage>2284</spage><epage>2293</epage><pages>2284-2293</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The design of efficient artificial photosynthetic systems that harvest solar energy to drive the hydrogen evolution reaction via water reduction is of great importance from both the theoretical and practical viewpoints. Integrating appropriate co-catalyst promoters with strong light absorbing materials represents an ideal strategy to enhance the conversion efficiency of solar energy in hydrogen production. Herein, we report, for the first time, the synthesis of a class of unique hybrid structures consisting of ultrathin Co(Ni)-doped MoS2 nanosheets (co-catalyst promoter) intimately grown on semiconductor CdS nanorods (light absorber). The as-synthesized one-dimensional CdS@doped-MoS2 heterostructures exhibited very high photocatalytic activity (with a quantum yield of 17.3%) and stability towards H2 evolution from the photoreduction of water. Theoretical calculations revealed that Ni doping can increase the number of uncoordinated atoms at the edge sites of MoS2 nanosheets to promote electron transfer across the CdS/MoS2 interfaces as well as hydrogen reduction, leading to an efficient H2 evolution reaction.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof 纳米研究:英文版, 2016 (8), p.2284-2293
issn 1998-0124
1998-0000
language eng
recordid cdi_chongqing_primary_669508254
source Springer Link
title Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Co%EF%BC%88Ni%EF%BC%89-doped%20MoS2%20nanosheets%20as%20catalytic%20promoters%20enabling%20efficient%20solar%20hydrogen%20production&rft.jtitle=%E7%BA%B3%E7%B1%B3%E7%A0%94%E7%A9%B6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Xiaoyan%20Ma%20Jinquan%20Li%20Changhua%20An%20Juan%20Feng%20Yuhua%20Chi%20Junxue%20Liu%20Jun%20Zhang%20Yugang%20Sun&rft.date=2016&rft.issue=8&rft.spage=2284&rft.epage=2293&rft.pages=2284-2293&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/&rft_dat=%3Cchongqing%3E669508254%3C/chongqing%3E%3Cgrp_id%3Ecdi_FETCH-chongqing_primary_6695082543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=669508254&rfr_iscdi=true