Loading…
Identification of Odor Volatile Compounds and Deodorization ofPaphia undulata Enzymatic Hydrolysate
Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase mi- croextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from untreated samples and three deodorized samples (under the optimal conditions) ofPaphia u...
Saved in:
Published in: | 中国海洋大学学报:英文版 2016, Vol.15 (6), p.1101-1110 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase mi- croextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from untreated samples and three deodorized samples (under the optimal conditions) ofPaphia undulata enzymatic hydrolysate revealed that the compounds contrib- uting to the distinctive odor were 1-octen-3-ol, n-hexanal, n-heptanal, 2,4-heptadienal, and 2,4-decadienal, whereas n-pentanal, n-octanal, n-octanol, benzaldehyde, 2-ethylfuran and 2-pentylfuran were the main contributors to the aromatic flavor. The deodoriz- ing effects of activated carbon (AC) adsorption, yeast extract (YE) masking and tea polyphenol (TP) treatment on a P. undulata en- zymatic hydrolysate were investigated using orthogonal experiments with sensory evaluation as the index. The following optimized deodorization conditions were obtained: AC adsorption (35 mg mL-1, 80℃, 40 rain), YE masking (7 mgmL l, 45 ℃, 30 min) and TP treatment (0.4mgmL-l, 40℃, 50min). AC adsorption effectively removed off-flavor volatile aldehydes and ketones. YE masking modified the odor profile by increasing the relative contents of aromatic compounds and decreasing the relative contents of aldehydes and ketones. The TP treatment was not effective in reducing the odor score, but it significantly reduced the relative content of alde- hydes while increasing that of alkanes. It is also notable that TP effectively suppressed trimethylamine (TMA) formation in a P. un- dulate hydrolysate solution for a period of 72 h. |
---|---|
ISSN: | 1672-5182 1993-5021 |