Loading…
Density-functional theory study on the electronic properties of laves phase superconductor CaIr2
In this work we have used density-functional theory methods such as full-potential local orbital minimum basis(FPLO) and ELK-flapw to study the electronic structure of newly discovered Laves phase superconductor CaIr_2.The calculation of density of states(DOS) indicates that the bands near Fermi lev...
Saved in:
Published in: | 中国物理B:英文版 2017-04, Vol.26 (4), p.438-443 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work we have used density-functional theory methods such as full-potential local orbital minimum basis(FPLO) and ELK-flapw to study the electronic structure of newly discovered Laves phase superconductor CaIr_2.The calculation of density of states(DOS) indicates that the bands near Fermi level are mostly occupied by the d-electrons of iridium.The simulation of de Haas-van Alphen(dHvA) effect has been performed by using Elk code to check the Fermi surface topology.The results show that there exist four Fermi surfaces in CaIr_2,including two electron-type and two hole-type surfaces.The optical response properties of CaIr_2 have been calculated in the dipole-transition approximations combined with including intra-band Drude-like terms.In the optical spectrum σ(ω) shows that the crossover from intraband to inter-band absorption occur near 1.45 eV.Further analysis on the electron energy loss spectra(EELS) matches the conclusion from that of optical conductivity σ(ω). |
---|---|
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/26/4/047401 |