Loading…
Visible light absorption of (Fe, C/N) co-doped NaTaO3: DFT+U
The effects of Fe-C/N co-doping on the electronic and optical properties of NaTaO3 are studied with density func- tional theory. Our calculations indicate that mono-doped and co-doped sodium tantalate are both thermodynamically stable. The co-doping sodium tantalate can reduce the energy band gap to...
Saved in:
Published in: | 中国物理B:英文版 2017, Vol.26 (8), p.376-382 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effects of Fe-C/N co-doping on the electronic and optical properties of NaTaO3 are studied with density func- tional theory. Our calculations indicate that mono-doped and co-doped sodium tantalate are both thermodynamically stable. The co-doping sodium tantalate can reduce the energy band gap to a greater degree due to the synergistic effects of Fe and C (N) atoms than mono-doping sodium tantalate, and has a larger optical absorption of the whole visible spectrum. The band alignments for the doped NaTaO3 are well positioned for the feasibility of hydrogen production by water splitting. The Fe--C co-doping can enhance the absorption of the visible light and its photocatalytic activity more than Fe-N co-doping due to the different locations of impurity energy levels originating from their p-d hybridization effect. |
---|---|
ISSN: | 1674-1056 2058-3834 |