Loading…

Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates

The Hamiltonian analysis for a 3-dimensional connection dynamics of o(1, 2), spanned by {L-+, L-2, L+2) instead of {Lol, L02, L12}, is first conducted in a Bondi-like coordinate system. The symmetry of the system is clearly presented. A null coframe with 3 independent variables and 9 connection coef...

Full description

Saved in:
Bibliographic Details
Published in:理论物理通讯:英文版 2017, Vol.67 (8), p.227-235
Main Author: 黄超光 孔师碑
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 235
container_issue 8
container_start_page 227
container_title 理论物理通讯:英文版
container_volume 67
creator 黄超光 孔师碑
description The Hamiltonian analysis for a 3-dimensional connection dynamics of o(1, 2), spanned by {L-+, L-2, L+2) instead of {Lol, L02, L12}, is first conducted in a Bondi-like coordinate system. The symmetry of the system is clearly presented. A null coframe with 3 independent variables and 9 connection coefficients are treated as basic configuration variables. All constraints and their consistency conditions, the solutions of Lagrange multipliers as well as the equations of motion are presented. There is no physical degree of freedom in the system. The Bafiados-Teitelboim-Zanelli (BTZ) spaeetime is discussed as an example to check the analysis. Unlike the ADM formalism, where only non-degenerate geometries on slices are dealt with and the Ashtekar formalism, where non-degenerate geometries on slices are mainly concerned though the degenerate geometries may be studied as well, in the present formalism the geometries on the slices are always degenerate though the geometries for the spacetime are not degenerate.
format article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_673003261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673003261</cqvip_id><sourcerecordid>673003261</sourcerecordid><originalsourceid>FETCH-chongqing_primary_6730032613</originalsourceid><addsrcrecordid>eNqNi70OgjAURjtoIv68Q-PepLSxzAoad91JAwWvlnuVy8Lb28EHcPpyTs63EJk2B6tcrs1KrJmfWmtTuDwTt6sfIE6E4FEe0ceZgSV10qoKhoAMlKQsCTE0UwJZzZguDUtAeSJsQUV4hVTQ2AL6KfBWLDsfOex-uxH7y_leXlXzIOw_gH39HmHw41y7wmptjcvtX9EXCoo-Yw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates</title><source>Institute of Physics</source><creator>黄超光 孔师碑</creator><creatorcontrib>黄超光 孔师碑</creatorcontrib><description>The Hamiltonian analysis for a 3-dimensional connection dynamics of o(1, 2), spanned by {L-+, L-2, L+2) instead of {Lol, L02, L12}, is first conducted in a Bondi-like coordinate system. The symmetry of the system is clearly presented. A null coframe with 3 independent variables and 9 connection coefficients are treated as basic configuration variables. All constraints and their consistency conditions, the solutions of Lagrange multipliers as well as the equations of motion are presented. There is no physical degree of freedom in the system. The Bafiados-Teitelboim-Zanelli (BTZ) spaeetime is discussed as an example to check the analysis. Unlike the ADM formalism, where only non-degenerate geometries on slices are dealt with and the Ashtekar formalism, where non-degenerate geometries on slices are mainly concerned though the degenerate geometries may be studied as well, in the present formalism the geometries on the slices are always degenerate though the geometries for the spacetime are not degenerate.</description><identifier>ISSN: 0253-6102</identifier><language>eng</language><subject>三维 ; 几何形状 ; 哈密顿量 ; 坐标系 ; 形式主义 ; 拉格朗日乘子 ; 物理系统 ; 连接</subject><ispartof>理论物理通讯:英文版, 2017, Vol.67 (8), p.227-235</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83837X/83837X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>黄超光 孔师碑</creatorcontrib><title>Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates</title><title>理论物理通讯:英文版</title><addtitle>Communications in Theoretical Physics</addtitle><description>The Hamiltonian analysis for a 3-dimensional connection dynamics of o(1, 2), spanned by {L-+, L-2, L+2) instead of {Lol, L02, L12}, is first conducted in a Bondi-like coordinate system. The symmetry of the system is clearly presented. A null coframe with 3 independent variables and 9 connection coefficients are treated as basic configuration variables. All constraints and their consistency conditions, the solutions of Lagrange multipliers as well as the equations of motion are presented. There is no physical degree of freedom in the system. The Bafiados-Teitelboim-Zanelli (BTZ) spaeetime is discussed as an example to check the analysis. Unlike the ADM formalism, where only non-degenerate geometries on slices are dealt with and the Ashtekar formalism, where non-degenerate geometries on slices are mainly concerned though the degenerate geometries may be studied as well, in the present formalism the geometries on the slices are always degenerate though the geometries for the spacetime are not degenerate.</description><subject>三维</subject><subject>几何形状</subject><subject>哈密顿量</subject><subject>坐标系</subject><subject>形式主义</subject><subject>拉格朗日乘子</subject><subject>物理系统</subject><subject>连接</subject><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNi70OgjAURjtoIv68Q-PepLSxzAoad91JAwWvlnuVy8Lb28EHcPpyTs63EJk2B6tcrs1KrJmfWmtTuDwTt6sfIE6E4FEe0ceZgSV10qoKhoAMlKQsCTE0UwJZzZguDUtAeSJsQUV4hVTQ2AL6KfBWLDsfOex-uxH7y_leXlXzIOw_gH39HmHw41y7wmptjcvtX9EXCoo-Yw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>黄超光 孔师碑</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2017</creationdate><title>Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates</title><author>黄超光 孔师碑</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_6730032613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>三维</topic><topic>几何形状</topic><topic>哈密顿量</topic><topic>坐标系</topic><topic>形式主义</topic><topic>拉格朗日乘子</topic><topic>物理系统</topic><topic>连接</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>黄超光 孔师碑</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>理论物理通讯:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>黄超光 孔师碑</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates</atitle><jtitle>理论物理通讯:英文版</jtitle><addtitle>Communications in Theoretical Physics</addtitle><date>2017</date><risdate>2017</risdate><volume>67</volume><issue>8</issue><spage>227</spage><epage>235</epage><pages>227-235</pages><issn>0253-6102</issn><abstract>The Hamiltonian analysis for a 3-dimensional connection dynamics of o(1, 2), spanned by {L-+, L-2, L+2) instead of {Lol, L02, L12}, is first conducted in a Bondi-like coordinate system. The symmetry of the system is clearly presented. A null coframe with 3 independent variables and 9 connection coefficients are treated as basic configuration variables. All constraints and their consistency conditions, the solutions of Lagrange multipliers as well as the equations of motion are presented. There is no physical degree of freedom in the system. The Bafiados-Teitelboim-Zanelli (BTZ) spaeetime is discussed as an example to check the analysis. Unlike the ADM formalism, where only non-degenerate geometries on slices are dealt with and the Ashtekar formalism, where non-degenerate geometries on slices are mainly concerned though the degenerate geometries may be studied as well, in the present formalism the geometries on the slices are always degenerate though the geometries for the spacetime are not degenerate.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0253-6102
ispartof 理论物理通讯:英文版, 2017, Vol.67 (8), p.227-235
issn 0253-6102
language eng
recordid cdi_chongqing_primary_673003261
source Institute of Physics
subjects 三维
几何形状
哈密顿量
坐标系
形式主义
拉格朗日乘子
物理系统
连接
title Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20Analysis%20of%203-Dimensional%20Connection%20Dynamics%20in%20Bondi-like%20Coordinates&rft.jtitle=%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E9%80%9A%E8%AE%AF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E9%BB%84%E8%B6%85%E5%85%89%20%E5%AD%94%E5%B8%88%E7%A2%91&rft.date=2017&rft.volume=67&rft.issue=8&rft.spage=227&rft.epage=235&rft.pages=227-235&rft.issn=0253-6102&rft_id=info:doi/&rft_dat=%3Cchongqing%3E673003261%3C/chongqing%3E%3Cgrp_id%3Ecdi_FETCH-chongqing_primary_6730032613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=673003261&rfr_iscdi=true