Loading…

Functional characterization of (E)-β-caryophyllene synthase from lima bean and its up-regulation by spider mites and alamethicin

(E)-β-Caryophyllene is a sesquiterpene compound widely distributed in plants and functions in plant defence. However, little is known about the sequence and function of (E)-β-caryophyllene synthase in lima bean (Phaseolus lunatus). Here, we report a new full-length cDNA (PICAHS) encoding (E)-β-caryo...

Full description

Saved in:
Bibliographic Details
Published in:农业科学学报:英文版 2017, Vol.16 (10), p.2231-2238
Main Author: LI Feng-qi FU Ning-ning ZHOU Jing-jiang WANG Gui-rong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(E)-β-Caryophyllene is a sesquiterpene compound widely distributed in plants and functions in plant defence. However, little is known about the sequence and function of (E)-β-caryophyllene synthase in lima bean (Phaseolus lunatus). Here, we report a new full-length cDNA (PICAHS) encoding (E)-β-caryophyllene synthase, a possible key enzyme of plant defence. The cDNA of PICAHS contains an open reading frame of 1 761 bp, encoding a protein of 586 amino acids with a predicted mass of 67.95 kDa. The deduced amino acid sequence shows 52% identity with sesquiterpene synthase MtCAHS of Med- icago truncatula. Based on phylogenetic analysis, PICAHS is classified as the terpene synthases (TPS)-a subfamily. The recombinant enzyme, expressed in Escherichia coil, catalysed the formation of a major product (E)-β-caryophyllene (82%) and a minor product a-humulene (18%) from farnesyl dJphosphate. Real-time quantitative PCR (qRT-PCR) analysis found that the PICAHS transcript was significantly up-regulated in leaves after treatment with spider mites and alamethicin (ALA), suggesting its ecological function in plant defence.
ISSN:2095-3119
2352-3425