Loading…
Exact Solutions of Atmospheric(2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations
Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions...
Saved in:
Published in: | 理论物理通讯:英文版 2016 (12), p.595-608 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 608 |
container_issue | 12 |
container_start_page | 595 |
container_title | 理论物理通讯:英文版 |
container_volume | |
creator | 刘萍 王亚雄 任博 李金花 |
description | Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. |
format | article |
fullrecord | <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_67738480504849544950484851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>67738480504849544950484851</cqvip_id><sourcerecordid>67738480504849544950484851</sourcerecordid><originalsourceid>FETCH-chongqing_primary_677384805048495449504848513</originalsourceid><addsrcrecordid>eNqdjMtuwjAURL0AiRT4By-pqkh23iz7CIJNN2UfGWOIke2b-DpS8_eEql_AYnRGOpqZkYgleRoXnCUL8oJ4Y4wlZcEjYutfIQP9ATMEDQ4pXOh7sIBdq7yWm-SNv8Zf2iqHkxaGfoMz2inh6cFJsJ1XiPpk1EPE7Xj2gEEELekHDJNxCnta94P4e1-R-UUYVOt_Lkm6q4-f-1i24K69dtem89oKPzZFWaZVVrGcZVW2zbMpj1blPH1udQfBRk_7</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exact Solutions of Atmospheric(2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations</title><source>Institute of Physics</source><creator>刘萍 王亚雄 任博 李金花</creator><creatorcontrib>刘萍 王亚雄 任博 李金花</creatorcontrib><description>Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space.</description><identifier>ISSN: 0253-6102</identifier><language>eng</language><ispartof>理论物理通讯:英文版, 2016 (12), p.595-608</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83837X/83837X.jpg</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids></links><search><creatorcontrib>刘萍 王亚雄 任博 李金花</creatorcontrib><title>Exact Solutions of Atmospheric(2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations</title><title>理论物理通讯:英文版</title><addtitle>Communications in Theoretical Physics</addtitle><description>Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space.</description><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqdjMtuwjAURL0AiRT4By-pqkh23iz7CIJNN2UfGWOIke2b-DpS8_eEql_AYnRGOpqZkYgleRoXnCUL8oJ4Y4wlZcEjYutfIQP9ATMEDQ4pXOh7sIBdq7yWm-SNv8Zf2iqHkxaGfoMz2inh6cFJsJ1XiPpk1EPE7Xj2gEEELekHDJNxCnta94P4e1-R-UUYVOt_Lkm6q4-f-1i24K69dtem89oKPzZFWaZVVrGcZVW2zbMpj1blPH1udQfBRk_7</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>刘萍 王亚雄 任博 李金花</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2016</creationdate><title>Exact Solutions of Atmospheric(2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations</title><author>刘萍 王亚雄 任博 李金花</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_677384805048495449504848513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>刘萍 王亚雄 任博 李金花</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>理论物理通讯:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘萍 王亚雄 任博 李金花</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Solutions of Atmospheric(2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations</atitle><jtitle>理论物理通讯:英文版</jtitle><addtitle>Communications in Theoretical Physics</addtitle><date>2016</date><risdate>2016</risdate><issue>12</issue><spage>595</spage><epage>608</epage><pages>595-608</pages><issn>0253-6102</issn><abstract>Exact solutions of the atmospheric(2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq(INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-6102 |
ispartof | 理论物理通讯:英文版, 2016 (12), p.595-608 |
issn | 0253-6102 |
language | eng |
recordid | cdi_chongqing_primary_67738480504849544950484851 |
source | Institute of Physics |
title | Exact Solutions of Atmospheric(2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Solutions%20of%20Atmospheric(2+1)-Dimensional%20Nonlinear%20Incompressible%20Non-hydrostatic%20Boussinesq%20Equations&rft.jtitle=%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E9%80%9A%E8%AE%AF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%88%98%E8%90%8D%20%E7%8E%8B%E4%BA%9A%E9%9B%84%20%E4%BB%BB%E5%8D%9A%20%E6%9D%8E%E9%87%91%E8%8A%B1&rft.date=2016&rft.issue=12&rft.spage=595&rft.epage=608&rft.pages=595-608&rft.issn=0253-6102&rft_id=info:doi/&rft_dat=%3Cchongqing%3E67738480504849544950484851%3C/chongqing%3E%3Cgrp_id%3Ecdi_FETCH-chongqing_primary_677384805048495449504848513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=67738480504849544950484851&rfr_iscdi=true |