Loading…

Lie Symmetries,Conservation Laws and Explicit Solutions for Time Fractional Rosenau–Haynam Equation

Under investigation in this paper is the invariance properties of the time fractional Rosenau-Haynam equation, which can be used to describe the formation of patterns in liquid drops. By using the Lie group analysis method, the vector fields and symmetry reductions of the equation are derived, respe...

Full description

Saved in:
Bibliographic Details
Published in:理论物理通讯:英文版 2017 (2), p.157-165
Main Author: 秦春艳 田守富 王秀彬 张田田
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 165
container_issue 2
container_start_page 157
container_title 理论物理通讯:英文版
container_volume
creator 秦春艳 田守富 王秀彬 张田田
description Under investigation in this paper is the invariance properties of the time fractional Rosenau-Haynam equation, which can be used to describe the formation of patterns in liquid drops. By using the Lie group analysis method, the vector fields and symmetry reductions of the equation are derived, respectively. Moreover, based on the power series theory, a kind of explicit power series solutions for the equation are well constructed with a detailed derivation. Finally, by using the new conservation theorem, two kinds of conservation laws of the equation are well constructed with a detailed derivation.
format article
fullrecord <record><control><sourceid>chongqing</sourceid><recordid>TN_cdi_chongqing_primary_67738480504849554850484855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>67738480504849554850484855</cqvip_id><sourcerecordid>67738480504849554850484855</sourcerecordid><originalsourceid>FETCH-chongqing_primary_677384805048495548504848553</originalsourceid><addsrcrecordid>eNqdjE0OgjAUhLvQRPy5wzuAJBUo1DXBsHCl7MkLVq2hLbSgsvMO3tCTGI0ncDWTb_LNiHg0YKEfr2gwIVPnLpTSIIlXHhFbKWA_KCU6K4VbpkY7Ya_YSaNhizcHqA-Q3ZtaVrKDvan7z-TgaCwUUgnYWKw-CGvYGSc09q_HM8dBo4Ks7b9PczI-Yu3E4pczEm6yIs396mz0qZX6VDZWKrRDGSdJyCNOGY14tGYs4t_GGQv_s96UNU3x</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lie Symmetries,Conservation Laws and Explicit Solutions for Time Fractional Rosenau–Haynam Equation</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>秦春艳 田守富 王秀彬 张田田</creator><creatorcontrib>秦春艳 田守富 王秀彬 张田田</creatorcontrib><description>Under investigation in this paper is the invariance properties of the time fractional Rosenau-Haynam equation, which can be used to describe the formation of patterns in liquid drops. By using the Lie group analysis method, the vector fields and symmetry reductions of the equation are derived, respectively. Moreover, based on the power series theory, a kind of explicit power series solutions for the equation are well constructed with a detailed derivation. Finally, by using the new conservation theorem, two kinds of conservation laws of the equation are well constructed with a detailed derivation.</description><identifier>ISSN: 0253-6102</identifier><language>eng</language><ispartof>理论物理通讯:英文版, 2017 (2), p.157-165</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83837X/83837X.jpg</thumbnail><link.rule.ids>314,780,784,4022</link.rule.ids></links><search><creatorcontrib>秦春艳 田守富 王秀彬 张田田</creatorcontrib><title>Lie Symmetries,Conservation Laws and Explicit Solutions for Time Fractional Rosenau–Haynam Equation</title><title>理论物理通讯:英文版</title><addtitle>Communications in Theoretical Physics</addtitle><description>Under investigation in this paper is the invariance properties of the time fractional Rosenau-Haynam equation, which can be used to describe the formation of patterns in liquid drops. By using the Lie group analysis method, the vector fields and symmetry reductions of the equation are derived, respectively. Moreover, based on the power series theory, a kind of explicit power series solutions for the equation are well constructed with a detailed derivation. Finally, by using the new conservation theorem, two kinds of conservation laws of the equation are well constructed with a detailed derivation.</description><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqdjE0OgjAUhLvQRPy5wzuAJBUo1DXBsHCl7MkLVq2hLbSgsvMO3tCTGI0ncDWTb_LNiHg0YKEfr2gwIVPnLpTSIIlXHhFbKWA_KCU6K4VbpkY7Ya_YSaNhizcHqA-Q3ZtaVrKDvan7z-TgaCwUUgnYWKw-CGvYGSc09q_HM8dBo4Ks7b9PczI-Yu3E4pczEm6yIs396mz0qZX6VDZWKrRDGSdJyCNOGY14tGYs4t_GGQv_s96UNU3x</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>秦春艳 田守富 王秀彬 张田田</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope></search><sort><creationdate>2017</creationdate><title>Lie Symmetries,Conservation Laws and Explicit Solutions for Time Fractional Rosenau–Haynam Equation</title><author>秦春艳 田守富 王秀彬 张田田</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-chongqing_primary_677384805048495548504848553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>秦春艳 田守富 王秀彬 张田田</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><jtitle>理论物理通讯:英文版</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>秦春艳 田守富 王秀彬 张田田</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lie Symmetries,Conservation Laws and Explicit Solutions for Time Fractional Rosenau–Haynam Equation</atitle><jtitle>理论物理通讯:英文版</jtitle><addtitle>Communications in Theoretical Physics</addtitle><date>2017</date><risdate>2017</risdate><issue>2</issue><spage>157</spage><epage>165</epage><pages>157-165</pages><issn>0253-6102</issn><abstract>Under investigation in this paper is the invariance properties of the time fractional Rosenau-Haynam equation, which can be used to describe the formation of patterns in liquid drops. By using the Lie group analysis method, the vector fields and symmetry reductions of the equation are derived, respectively. Moreover, based on the power series theory, a kind of explicit power series solutions for the equation are well constructed with a detailed derivation. Finally, by using the new conservation theorem, two kinds of conservation laws of the equation are well constructed with a detailed derivation.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0253-6102
ispartof 理论物理通讯:英文版, 2017 (2), p.157-165
issn 0253-6102
language eng
recordid cdi_chongqing_primary_67738480504849554850484855
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Lie Symmetries,Conservation Laws and Explicit Solutions for Time Fractional Rosenau–Haynam Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-chongqing&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lie%20Symmetries,Conservation%20Laws%20and%20Explicit%20Solutions%20for%20Time%20Fractional%20Rosenau%E2%80%93Haynam%20Equation&rft.jtitle=%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E9%80%9A%E8%AE%AF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E7%A7%A6%E6%98%A5%E8%89%B3%20%E7%94%B0%E5%AE%88%E5%AF%8C%20%E7%8E%8B%E7%A7%80%E5%BD%AC%20%E5%BC%A0%E7%94%B0%E7%94%B0&rft.date=2017&rft.issue=2&rft.spage=157&rft.epage=165&rft.pages=157-165&rft.issn=0253-6102&rft_id=info:doi/&rft_dat=%3Cchongqing%3E67738480504849554850484855%3C/chongqing%3E%3Cgrp_id%3Ecdi_FETCH-chongqing_primary_677384805048495548504848553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=67738480504849554850484855&rfr_iscdi=true