Loading…
The Influence of the Corrosion Product Layer Generated on the High Strength Low-Alloy Steels Welded by Underwater Wet Welding with Stainless Steel Electrodes in Seawater
The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The microstructural and electrochemical corrosion study of base metal(BM), weld zone(WZ) and heat affected zone(HAZ) are carried out to understand the influence of the corrosion product layer gen...
Saved in:
Published in: | 中国海洋大学学报:英文版 2017 (1), p.49-56 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The microstructural and electrochemical corrosion study of base metal(BM), weld zone(WZ) and heat affected zone(HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS) and scanning electron microscope(SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen. |
---|---|
ISSN: | 1672-5182 1993-5021 |