Loading…

Stream temperature dynamics in Nam Co basin, southern Tibetan Plateau

Stream temperatures are sensitive to climate change and runoff regime variations. A comprehensive understanding on the effects of glacial melting on the stream temperatures are important in the Tibetan Plateau, of which contains the largest ice volume outside Polar Regions. This study documented the...

Full description

Saved in:
Bibliographic Details
Published in:山地科学学报:英文版 2017 (12), p.2458-2470
Main Author: GAO Tan-guang KANG Shi-chang ZHANG Ting-jun YANG Da-qing SHANG Jian-guo QIN Xiang
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stream temperatures are sensitive to climate change and runoff regime variations. A comprehensive understanding on the effects of glacial melting on the stream temperatures are important in the Tibetan Plateau, of which contains the largest ice volume outside Polar Regions. This study documented the high-resolution stream temperature thermal regimes from glacier-fed and non-glacial rivers at four sites, versus a high-resolution glacier mass balance monitoring at Zhadang glacier, during summer melt seasons from 2007-2009 in the Nam Co basin of southern Tibetan Plateau. The results showed mean summer stream temperature and magnitude of daily thermal variation were lower at all sites when compared with alpine glacierized environments at lower latitudes. Mean stream temperatures for glacier-fed rivers(4.0℃ to 6.5℃)were minimum and least variable near the glacier terminus with increasing toward downstream(+0.13℃ km–1 to +0.28℃ km–1). Meanwhile, stream temperature in 2008 was similar to that in 2007 and2009. For the non-glacial rivers, mean stream temperatures was about 9.0℃ with significantly warmer in summer months in 2009 and 2007 than that in 2008. These differences indicated that stream temperature was strongly influenced by discharge and precipitation. Particularly, the glacier mass balance played a large role on the stream temperature directly when the glacier melt contributed more than 50% of the glacial river runoff. Our results demonstrated the stream thermal variability from southern Tibetan rivers and provided new insight into the influence of glacier mass balance on stream thermal variability in high-altitude river system.
ISSN:1672-6316
1993-0321