Loading…
Cyclostratigraphic age constraining for Quaternary sediments in the Makarov Basin of the western Arctic Ocean using manganese variability
The Quaternary paleoenvironmental history of the Arctic Ocean remains uncertain, mainly due to the limited chronological constraints, especially beyond the 14C dating limits of accelerator mass spectrometry (AMS). The difficulty in establishing reliable chronostratigraphies is mainly attributed to l...
Saved in:
Published in: | Quaternary geochronology 2020-02, Vol.55, p.101021, Article 101021 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a399t-fd97450fa7e5a631dfc6669ca9d39e3cb4e5824d49cd53243d3a02b2f47080e93 |
---|---|
cites | cdi_FETCH-LOGICAL-a399t-fd97450fa7e5a631dfc6669ca9d39e3cb4e5824d49cd53243d3a02b2f47080e93 |
container_end_page | |
container_issue | |
container_start_page | 101021 |
container_title | Quaternary geochronology |
container_volume | 55 |
creator | Park, Kwangkyu Kim, Jung-Hyun Asahi, Hirofumi Polyak, Leonid Khim, Boo-Keun Schreck, Michael Niessen, Frank Kong, Gee Soo Nam, Seung-Il |
description | The Quaternary paleoenvironmental history of the Arctic Ocean remains uncertain, mainly due to the limited chronological constraints, especially beyond the 14C dating limits of accelerator mass spectrometry (AMS). The difficulty in establishing reliable chronostratigraphies is mainly attributed to low sedimentation rates and diagenetic sediment changes, resulting in very poor preservation of microfossils and altered paleomagnetic records. In the absence of independent chronostratigraphic data, the age model of Pleistocene sediments from the Arctic Ocean is mainly based on cyclostratigraphy, which relates lithologic changes to climatic variability on orbital time scales. In this study, we used the Mn/Al record measured from the sediment core ARA03B-41GC retrieved from the Makarov Basin in the western Arctic Ocean. The Mn/Al variation was tuned to the global benthic oxygen isotope stack (LR04) curve under different assumptions for computational correlation. Regardless of assumptions, our computational approach led to similar ages of about 600–1,000 ka for the bottom part of the core. These age models were up to about 200 ka older than those derived from lithostratigraphic approaches. Interestingly, our new age models show that the Ca/Al peak, a proxy for a detrital input from the Laurentide Ice Sheet, first occurred about 150 ka earlier than those previously proposed. Therefore, our results suggest that the glaciers in northern North America developed more extensively at about 810 ka than in earlier glacial periods, and influenced the sedimentary and paleoceanographic environments of the Arctic Ocean much earlier than previously thought. In order to establish a more comprehensive age model, more work is needed to validate our findings with different sediment cores recovered from the western Arctic Ocean. |
doi_str_mv | 10.1016/j.quageo.2019.101021 |
format | article |
fullrecord | <record><control><sourceid>elsevier_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_20873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1871101419300457</els_id><sourcerecordid>S1871101419300457</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-fd97450fa7e5a631dfc6669ca9d39e3cb4e5824d49cd53243d3a02b2f47080e93</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhRdRsFbfQDAvsDXZ7F9uhFr8g0oR9DpMs7Ntaptoklb6CL612a7eejXDyTmHyZckl4yOGGXl9Wr0uYUF2lFGmegkmrGjZMDqqk4pL-jxYWdpfMlPkzPvV5QWvK74IPme7NXa-uAg6IWDj6VWJFYRZU0naqPNgrTWkZctBHQG3J54bPQGTfBEGxKWSJ7hHZzdkVvwUbHtQfxC3wXI2KkQS2cKwZCt7_o2YBZg0CPZgdMw12sd9ufJSQtrjxe_c5i83d-9Th7T6ezhaTKepsCFCGnbiCovaAsVFlBy1rSqLEuhQDRcIFfzHIs6y5tcqKbgWc4bDjSbZ21e0Zqi4MPkqu9VTvugjTTWgWSU8kpmNEKJjvzPYb132MoPpzfx59ElO-ByJXvgsgMue-AxdtPHMF6_0-ikVxqNirQcqiAbq_8v-AF-JI1U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cyclostratigraphic age constraining for Quaternary sediments in the Makarov Basin of the western Arctic Ocean using manganese variability</title><source>NORA - Norwegian Open Research Archives</source><source>ScienceDirect Journals</source><creator>Park, Kwangkyu ; Kim, Jung-Hyun ; Asahi, Hirofumi ; Polyak, Leonid ; Khim, Boo-Keun ; Schreck, Michael ; Niessen, Frank ; Kong, Gee Soo ; Nam, Seung-Il</creator><creatorcontrib>Park, Kwangkyu ; Kim, Jung-Hyun ; Asahi, Hirofumi ; Polyak, Leonid ; Khim, Boo-Keun ; Schreck, Michael ; Niessen, Frank ; Kong, Gee Soo ; Nam, Seung-Il</creatorcontrib><description>The Quaternary paleoenvironmental history of the Arctic Ocean remains uncertain, mainly due to the limited chronological constraints, especially beyond the 14C dating limits of accelerator mass spectrometry (AMS). The difficulty in establishing reliable chronostratigraphies is mainly attributed to low sedimentation rates and diagenetic sediment changes, resulting in very poor preservation of microfossils and altered paleomagnetic records. In the absence of independent chronostratigraphic data, the age model of Pleistocene sediments from the Arctic Ocean is mainly based on cyclostratigraphy, which relates lithologic changes to climatic variability on orbital time scales. In this study, we used the Mn/Al record measured from the sediment core ARA03B-41GC retrieved from the Makarov Basin in the western Arctic Ocean. The Mn/Al variation was tuned to the global benthic oxygen isotope stack (LR04) curve under different assumptions for computational correlation. Regardless of assumptions, our computational approach led to similar ages of about 600–1,000 ka for the bottom part of the core. These age models were up to about 200 ka older than those derived from lithostratigraphic approaches. Interestingly, our new age models show that the Ca/Al peak, a proxy for a detrital input from the Laurentide Ice Sheet, first occurred about 150 ka earlier than those previously proposed. Therefore, our results suggest that the glaciers in northern North America developed more extensively at about 810 ka than in earlier glacial periods, and influenced the sedimentary and paleoceanographic environments of the Arctic Ocean much earlier than previously thought. In order to establish a more comprehensive age model, more work is needed to validate our findings with different sediment cores recovered from the western Arctic Ocean.</description><identifier>ISSN: 1871-1014</identifier><identifier>ISSN: 1878-0350</identifier><identifier>EISSN: 1878-0350</identifier><identifier>DOI: 10.1016/j.quageo.2019.101021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cyclostratigraphy ; Geofag: 450 ; Geosciences: 450 ; Glacial-interglacial cycles ; Kvartærgeologi, glasiologi: 465 ; Laurentide Ice Sheet ; Manganese ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Quaternary geology, glaciology: 465 ; VDP ; Western Arctic Ocean</subject><ispartof>Quaternary geochronology, 2020-02, Vol.55, p.101021, Article 101021</ispartof><rights>2019 Elsevier B.V.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-fd97450fa7e5a631dfc6669ca9d39e3cb4e5824d49cd53243d3a02b2f47080e93</citedby><cites>FETCH-LOGICAL-a399t-fd97450fa7e5a631dfc6669ca9d39e3cb4e5824d49cd53243d3a02b2f47080e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26567,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Kwangkyu</creatorcontrib><creatorcontrib>Kim, Jung-Hyun</creatorcontrib><creatorcontrib>Asahi, Hirofumi</creatorcontrib><creatorcontrib>Polyak, Leonid</creatorcontrib><creatorcontrib>Khim, Boo-Keun</creatorcontrib><creatorcontrib>Schreck, Michael</creatorcontrib><creatorcontrib>Niessen, Frank</creatorcontrib><creatorcontrib>Kong, Gee Soo</creatorcontrib><creatorcontrib>Nam, Seung-Il</creatorcontrib><title>Cyclostratigraphic age constraining for Quaternary sediments in the Makarov Basin of the western Arctic Ocean using manganese variability</title><title>Quaternary geochronology</title><description>The Quaternary paleoenvironmental history of the Arctic Ocean remains uncertain, mainly due to the limited chronological constraints, especially beyond the 14C dating limits of accelerator mass spectrometry (AMS). The difficulty in establishing reliable chronostratigraphies is mainly attributed to low sedimentation rates and diagenetic sediment changes, resulting in very poor preservation of microfossils and altered paleomagnetic records. In the absence of independent chronostratigraphic data, the age model of Pleistocene sediments from the Arctic Ocean is mainly based on cyclostratigraphy, which relates lithologic changes to climatic variability on orbital time scales. In this study, we used the Mn/Al record measured from the sediment core ARA03B-41GC retrieved from the Makarov Basin in the western Arctic Ocean. The Mn/Al variation was tuned to the global benthic oxygen isotope stack (LR04) curve under different assumptions for computational correlation. Regardless of assumptions, our computational approach led to similar ages of about 600–1,000 ka for the bottom part of the core. These age models were up to about 200 ka older than those derived from lithostratigraphic approaches. Interestingly, our new age models show that the Ca/Al peak, a proxy for a detrital input from the Laurentide Ice Sheet, first occurred about 150 ka earlier than those previously proposed. Therefore, our results suggest that the glaciers in northern North America developed more extensively at about 810 ka than in earlier glacial periods, and influenced the sedimentary and paleoceanographic environments of the Arctic Ocean much earlier than previously thought. In order to establish a more comprehensive age model, more work is needed to validate our findings with different sediment cores recovered from the western Arctic Ocean.</description><subject>Cyclostratigraphy</subject><subject>Geofag: 450</subject><subject>Geosciences: 450</subject><subject>Glacial-interglacial cycles</subject><subject>Kvartærgeologi, glasiologi: 465</subject><subject>Laurentide Ice Sheet</subject><subject>Manganese</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Quaternary geology, glaciology: 465</subject><subject>VDP</subject><subject>Western Arctic Ocean</subject><issn>1871-1014</issn><issn>1878-0350</issn><issn>1878-0350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kN1KAzEQhRdRsFbfQDAvsDXZ7F9uhFr8g0oR9DpMs7Ntaptoklb6CL612a7eejXDyTmHyZckl4yOGGXl9Wr0uYUF2lFGmegkmrGjZMDqqk4pL-jxYWdpfMlPkzPvV5QWvK74IPme7NXa-uAg6IWDj6VWJFYRZU0naqPNgrTWkZctBHQG3J54bPQGTfBEGxKWSJ7hHZzdkVvwUbHtQfxC3wXI2KkQS2cKwZCt7_o2YBZg0CPZgdMw12sd9ufJSQtrjxe_c5i83d-9Th7T6ezhaTKepsCFCGnbiCovaAsVFlBy1rSqLEuhQDRcIFfzHIs6y5tcqKbgWc4bDjSbZ21e0Zqi4MPkqu9VTvugjTTWgWSU8kpmNEKJjvzPYb132MoPpzfx59ElO-ByJXvgsgMue-AxdtPHMF6_0-ikVxqNirQcqiAbq_8v-AF-JI1U</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Park, Kwangkyu</creator><creator>Kim, Jung-Hyun</creator><creator>Asahi, Hirofumi</creator><creator>Polyak, Leonid</creator><creator>Khim, Boo-Keun</creator><creator>Schreck, Michael</creator><creator>Niessen, Frank</creator><creator>Kong, Gee Soo</creator><creator>Nam, Seung-Il</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope></search><sort><creationdate>20200201</creationdate><title>Cyclostratigraphic age constraining for Quaternary sediments in the Makarov Basin of the western Arctic Ocean using manganese variability</title><author>Park, Kwangkyu ; Kim, Jung-Hyun ; Asahi, Hirofumi ; Polyak, Leonid ; Khim, Boo-Keun ; Schreck, Michael ; Niessen, Frank ; Kong, Gee Soo ; Nam, Seung-Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-fd97450fa7e5a631dfc6669ca9d39e3cb4e5824d49cd53243d3a02b2f47080e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cyclostratigraphy</topic><topic>Geofag: 450</topic><topic>Geosciences: 450</topic><topic>Glacial-interglacial cycles</topic><topic>Kvartærgeologi, glasiologi: 465</topic><topic>Laurentide Ice Sheet</topic><topic>Manganese</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Quaternary geology, glaciology: 465</topic><topic>VDP</topic><topic>Western Arctic Ocean</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kwangkyu</creatorcontrib><creatorcontrib>Kim, Jung-Hyun</creatorcontrib><creatorcontrib>Asahi, Hirofumi</creatorcontrib><creatorcontrib>Polyak, Leonid</creatorcontrib><creatorcontrib>Khim, Boo-Keun</creatorcontrib><creatorcontrib>Schreck, Michael</creatorcontrib><creatorcontrib>Niessen, Frank</creatorcontrib><creatorcontrib>Kong, Gee Soo</creatorcontrib><creatorcontrib>Nam, Seung-Il</creatorcontrib><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Quaternary geochronology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kwangkyu</au><au>Kim, Jung-Hyun</au><au>Asahi, Hirofumi</au><au>Polyak, Leonid</au><au>Khim, Boo-Keun</au><au>Schreck, Michael</au><au>Niessen, Frank</au><au>Kong, Gee Soo</au><au>Nam, Seung-Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclostratigraphic age constraining for Quaternary sediments in the Makarov Basin of the western Arctic Ocean using manganese variability</atitle><jtitle>Quaternary geochronology</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>55</volume><spage>101021</spage><pages>101021-</pages><artnum>101021</artnum><issn>1871-1014</issn><issn>1878-0350</issn><eissn>1878-0350</eissn><abstract>The Quaternary paleoenvironmental history of the Arctic Ocean remains uncertain, mainly due to the limited chronological constraints, especially beyond the 14C dating limits of accelerator mass spectrometry (AMS). The difficulty in establishing reliable chronostratigraphies is mainly attributed to low sedimentation rates and diagenetic sediment changes, resulting in very poor preservation of microfossils and altered paleomagnetic records. In the absence of independent chronostratigraphic data, the age model of Pleistocene sediments from the Arctic Ocean is mainly based on cyclostratigraphy, which relates lithologic changes to climatic variability on orbital time scales. In this study, we used the Mn/Al record measured from the sediment core ARA03B-41GC retrieved from the Makarov Basin in the western Arctic Ocean. The Mn/Al variation was tuned to the global benthic oxygen isotope stack (LR04) curve under different assumptions for computational correlation. Regardless of assumptions, our computational approach led to similar ages of about 600–1,000 ka for the bottom part of the core. These age models were up to about 200 ka older than those derived from lithostratigraphic approaches. Interestingly, our new age models show that the Ca/Al peak, a proxy for a detrital input from the Laurentide Ice Sheet, first occurred about 150 ka earlier than those previously proposed. Therefore, our results suggest that the glaciers in northern North America developed more extensively at about 810 ka than in earlier glacial periods, and influenced the sedimentary and paleoceanographic environments of the Arctic Ocean much earlier than previously thought. In order to establish a more comprehensive age model, more work is needed to validate our findings with different sediment cores recovered from the western Arctic Ocean.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.quageo.2019.101021</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1871-1014 |
ispartof | Quaternary geochronology, 2020-02, Vol.55, p.101021, Article 101021 |
issn | 1871-1014 1878-0350 1878-0350 |
language | eng |
recordid | cdi_cristin_nora_10037_20873 |
source | NORA - Norwegian Open Research Archives; ScienceDirect Journals |
subjects | Cyclostratigraphy Geofag: 450 Geosciences: 450 Glacial-interglacial cycles Kvartærgeologi, glasiologi: 465 Laurentide Ice Sheet Manganese Matematikk og Naturvitenskap: 400 Mathematics and natural science: 400 Quaternary geology, glaciology: 465 VDP Western Arctic Ocean |
title | Cyclostratigraphic age constraining for Quaternary sediments in the Makarov Basin of the western Arctic Ocean using manganese variability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclostratigraphic%20age%20constraining%20for%20Quaternary%20sediments%20in%20the%20Makarov%20Basin%20of%20the%20western%20Arctic%20Ocean%20using%20manganese%20variability&rft.jtitle=Quaternary%20geochronology&rft.au=Park,%20Kwangkyu&rft.date=2020-02-01&rft.volume=55&rft.spage=101021&rft.pages=101021-&rft.artnum=101021&rft.issn=1871-1014&rft.eissn=1878-0350&rft_id=info:doi/10.1016/j.quageo.2019.101021&rft_dat=%3Celsevier_crist%3ES1871101419300457%3C/elsevier_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a399t-fd97450fa7e5a631dfc6669ca9d39e3cb4e5824d49cd53243d3a02b2f47080e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |