Loading…
Observed and unobserved heterogeneity in failure data analysis
In reality, failure data are often collected under diffract operational conditions (covariates), leading to heterogeneity among the data. Heterogeneity can be classified as observed and unobserved heterogeneity. Un-observed heterogeneity is the effect of unknown, unrecorded, or missing covariates. I...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability Journal of risk and reliability, 2022-02, Vol.236 (1), p.194-207 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In reality, failure data are often collected under diffract operational conditions (covariates), leading to heterogeneity among the data. Heterogeneity can be classified as observed and unobserved heterogeneity. Un-observed heterogeneity is the effect of unknown, unrecorded, or missing covariates. In most reliability studies, the effect of unobserved covariates is neglected. This may lead to inaccurate reliability modeling, and consequently, wrong operation and maintenance decisions. There is a lack of a systematic approach to model the unobserved covariate in reliability analysis. This paper aims to present a framework for reliability analysis in the presence of unobserved and observed covariates. Here, the unobserved covariates will be analyzed using frailty models. A case study will illustrate the application of the framework. |
---|---|
ISSN: | 1748-006X 1748-0078 1748-0078 |
DOI: | 10.1177/1748006X211022538 |