Loading…

A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard

Quantifying marine methane fluxes of free gas (bubbles) from the seafloor into the water column is of importance for climate related studies, for example, in the Arctic, reliable methodologies are also of interest for studying man‐made gas and oil leakage systems at hydrocarbon production sites. Hyd...

Full description

Saved in:
Bibliographic Details
Published in:Limnology and oceanography, methods methods, 2015-06, Vol.13 (6), p.267-287
Main Authors: Veloso, M., Greinert, J., Mienert, J., De Batist, M.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 287
container_issue 6
container_start_page 267
container_title Limnology and oceanography, methods
container_volume 13
creator Veloso, M.
Greinert, J.
Mienert, J.
De Batist, M.
description Quantifying marine methane fluxes of free gas (bubbles) from the seafloor into the water column is of importance for climate related studies, for example, in the Arctic, reliable methodologies are also of interest for studying man‐made gas and oil leakage systems at hydrocarbon production sites. Hydroacoustic surveys with singlebeam and nowadays also multibeam systems have been proven to be a successful approach to detect bubble release from the seabed. A number of publications used singlebeam echosounder data to indirectly quantify free gas fluxes via empirical correlations between gas fluxes observed at the seafloor and the hydroacoustic response. Others utilize the hydroacoustic information in an inverse modeling approach to derive bubble fluxes. Here, we present an advanced methodology using data from splitbeam echosounder systems for analyzing gas release water depth (> 100 m). We introduce a new MATLAB‐based software for processing and interactively editing data and we present how bubble‐size distribution, bubble rising speed and the model used for calculating the backscatter response of single bubbles influence the final gas flow rate calculations. As a result, we highlight the need for further investigations on how large, wobbly bubbles, bubble clouds, and multi‐scattering influence target strength. The results emphasize that detailed studies of bubble‐size distributions and rising speeds need to be performed in parallel to hydroacoustic surveys to achieve realistic mediated methane flow rate and flux quantifications.
doi_str_mv 10.1002/lom3.10024
format article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_24967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780518539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-e58d3b7099a4cfb4a01378a47de8d1e6bb87d4979d52f681dba1dbce5b366a2b3</originalsourceid><addsrcrecordid>eNpNkcFu1DAQhiMEEqXthRfARy6BOLZjh9tStQvStpXaoh4tOx53DU6c2gnbfYi-c727qOIwmn-k7_9HmimKj7j6gquq_upDT_aKvimOMKO4ZII1b__T74sPKf3OREs5PyqeF2iADephWgcTfHjYIhsiepzVMDm7dcMD0rPWHpD1YYOimiAhNyADMKJNniKa045Ko3eTBtUj6NYhhXkwENM3dP6k-tFnk42hR9Ma0CJ2k-tQsDatQwR0dV_e_lVeq2hOindW-QSn__px8evi_O7sR7m6Xv48W6zKjtSClsCEIZpXbatoZzVVFSZcKMoNCIOh0VpwQ1veGlbbRmCjVa4OmCZNo2pNjotPh9wuujS5QQ4hKpnvRrisadvwTHw-EGMMjzOkSfYudeC9GiDMSWIuKoYFI21G8QHdOA9bOUbXq7jNabvAWu5esldUrq4vyV5lT3nw5PXw9OpR8Y_MyzmT91dLKW6-ry6Wt5fyhrwA78KR4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1780518539</pqid></control><display><type>article</type><title>A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard</title><source>Wiley</source><source>NORA - Norwegian Open Research Archives</source><creator>Veloso, M. ; Greinert, J. ; Mienert, J. ; De Batist, M.</creator><creatorcontrib>Veloso, M. ; Greinert, J. ; Mienert, J. ; De Batist, M.</creatorcontrib><description>Quantifying marine methane fluxes of free gas (bubbles) from the seafloor into the water column is of importance for climate related studies, for example, in the Arctic, reliable methodologies are also of interest for studying man‐made gas and oil leakage systems at hydrocarbon production sites. Hydroacoustic surveys with singlebeam and nowadays also multibeam systems have been proven to be a successful approach to detect bubble release from the seabed. A number of publications used singlebeam echosounder data to indirectly quantify free gas fluxes via empirical correlations between gas fluxes observed at the seafloor and the hydroacoustic response. Others utilize the hydroacoustic information in an inverse modeling approach to derive bubble fluxes. Here, we present an advanced methodology using data from splitbeam echosounder systems for analyzing gas release water depth (&gt; 100 m). We introduce a new MATLAB‐based software for processing and interactively editing data and we present how bubble‐size distribution, bubble rising speed and the model used for calculating the backscatter response of single bubbles influence the final gas flow rate calculations. As a result, we highlight the need for further investigations on how large, wobbly bubbles, bubble clouds, and multi‐scattering influence target strength. The results emphasize that detailed studies of bubble‐size distributions and rising speeds need to be performed in parallel to hydroacoustic surveys to achieve realistic mediated methane flow rate and flux quantifications.</description><identifier>ISSN: 1541-5856</identifier><identifier>EISSN: 1541-5856</identifier><identifier>DOI: 10.1002/lom3.10024</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Marine</subject><ispartof>Limnology and oceanography, methods, 2015-06, Vol.13 (6), p.267-287</ispartof><rights>2015 The Authors Limnology and Oceanography: Methods published by Wiley Periodicals, Inc. on behalf of Association for the Sciences of Limnology and Oceanography</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,26546,27903,27904</link.rule.ids></links><search><creatorcontrib>Veloso, M.</creatorcontrib><creatorcontrib>Greinert, J.</creatorcontrib><creatorcontrib>Mienert, J.</creatorcontrib><creatorcontrib>De Batist, M.</creatorcontrib><title>A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard</title><title>Limnology and oceanography, methods</title><addtitle>Limnol. Oceanogr. Methods</addtitle><description>Quantifying marine methane fluxes of free gas (bubbles) from the seafloor into the water column is of importance for climate related studies, for example, in the Arctic, reliable methodologies are also of interest for studying man‐made gas and oil leakage systems at hydrocarbon production sites. Hydroacoustic surveys with singlebeam and nowadays also multibeam systems have been proven to be a successful approach to detect bubble release from the seabed. A number of publications used singlebeam echosounder data to indirectly quantify free gas fluxes via empirical correlations between gas fluxes observed at the seafloor and the hydroacoustic response. Others utilize the hydroacoustic information in an inverse modeling approach to derive bubble fluxes. Here, we present an advanced methodology using data from splitbeam echosounder systems for analyzing gas release water depth (&gt; 100 m). We introduce a new MATLAB‐based software for processing and interactively editing data and we present how bubble‐size distribution, bubble rising speed and the model used for calculating the backscatter response of single bubbles influence the final gas flow rate calculations. As a result, we highlight the need for further investigations on how large, wobbly bubbles, bubble clouds, and multi‐scattering influence target strength. The results emphasize that detailed studies of bubble‐size distributions and rising speeds need to be performed in parallel to hydroacoustic surveys to achieve realistic mediated methane flow rate and flux quantifications.</description><subject>Marine</subject><issn>1541-5856</issn><issn>1541-5856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>3HK</sourceid><recordid>eNpNkcFu1DAQhiMEEqXthRfARy6BOLZjh9tStQvStpXaoh4tOx53DU6c2gnbfYi-c727qOIwmn-k7_9HmimKj7j6gquq_upDT_aKvimOMKO4ZII1b__T74sPKf3OREs5PyqeF2iADephWgcTfHjYIhsiepzVMDm7dcMD0rPWHpD1YYOimiAhNyADMKJNniKa045Ko3eTBtUj6NYhhXkwENM3dP6k-tFnk42hR9Ma0CJ2k-tQsDatQwR0dV_e_lVeq2hOindW-QSn__px8evi_O7sR7m6Xv48W6zKjtSClsCEIZpXbatoZzVVFSZcKMoNCIOh0VpwQ1veGlbbRmCjVa4OmCZNo2pNjotPh9wuujS5QQ4hKpnvRrisadvwTHw-EGMMjzOkSfYudeC9GiDMSWIuKoYFI21G8QHdOA9bOUbXq7jNabvAWu5esldUrq4vyV5lT3nw5PXw9OpR8Y_MyzmT91dLKW6-ry6Wt5fyhrwA78KR4Q</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Veloso, M.</creator><creator>Greinert, J.</creator><creator>Mienert, J.</creator><creator>De Batist, M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>KL.</scope><scope>L.G</scope><scope>3HK</scope></search><sort><creationdate>201506</creationdate><title>A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard</title><author>Veloso, M. ; Greinert, J. ; Mienert, J. ; De Batist, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-e58d3b7099a4cfb4a01378a47de8d1e6bb87d4979d52f681dba1dbce5b366a2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Marine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veloso, M.</creatorcontrib><creatorcontrib>Greinert, J.</creatorcontrib><creatorcontrib>Mienert, J.</creatorcontrib><creatorcontrib>De Batist, M.</creatorcontrib><collection>Istex</collection><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Limnology and oceanography, methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veloso, M.</au><au>Greinert, J.</au><au>Mienert, J.</au><au>De Batist, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard</atitle><jtitle>Limnology and oceanography, methods</jtitle><addtitle>Limnol. Oceanogr. Methods</addtitle><date>2015-06</date><risdate>2015</risdate><volume>13</volume><issue>6</issue><spage>267</spage><epage>287</epage><pages>267-287</pages><issn>1541-5856</issn><eissn>1541-5856</eissn><abstract>Quantifying marine methane fluxes of free gas (bubbles) from the seafloor into the water column is of importance for climate related studies, for example, in the Arctic, reliable methodologies are also of interest for studying man‐made gas and oil leakage systems at hydrocarbon production sites. Hydroacoustic surveys with singlebeam and nowadays also multibeam systems have been proven to be a successful approach to detect bubble release from the seabed. A number of publications used singlebeam echosounder data to indirectly quantify free gas fluxes via empirical correlations between gas fluxes observed at the seafloor and the hydroacoustic response. Others utilize the hydroacoustic information in an inverse modeling approach to derive bubble fluxes. Here, we present an advanced methodology using data from splitbeam echosounder systems for analyzing gas release water depth (&gt; 100 m). We introduce a new MATLAB‐based software for processing and interactively editing data and we present how bubble‐size distribution, bubble rising speed and the model used for calculating the backscatter response of single bubbles influence the final gas flow rate calculations. As a result, we highlight the need for further investigations on how large, wobbly bubbles, bubble clouds, and multi‐scattering influence target strength. The results emphasize that detailed studies of bubble‐size distributions and rising speeds need to be performed in parallel to hydroacoustic surveys to achieve realistic mediated methane flow rate and flux quantifications.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/lom3.10024</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1541-5856
ispartof Limnology and oceanography, methods, 2015-06, Vol.13 (6), p.267-287
issn 1541-5856
1541-5856
language eng
recordid cdi_cristin_nora_10037_24967
source Wiley; NORA - Norwegian Open Research Archives
subjects Marine
title A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20methodology%20for%20quantifying%20bubble%20flow%20rates%20in%20deep%20water%20using%20splitbeam%20echosounders:%20Examples%20from%20the%20Arctic%20offshore%20NW-Svalbard&rft.jtitle=Limnology%20and%20oceanography,%20methods&rft.au=Veloso,%20M.&rft.date=2015-06&rft.volume=13&rft.issue=6&rft.spage=267&rft.epage=287&rft.pages=267-287&rft.issn=1541-5856&rft.eissn=1541-5856&rft_id=info:doi/10.1002/lom3.10024&rft_dat=%3Cproquest_crist%3E1780518539%3C/proquest_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3284-e58d3b7099a4cfb4a01378a47de8d1e6bb87d4979d52f681dba1dbce5b366a2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1780518539&rft_id=info:pmid/&rfr_iscdi=true