Loading…
View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images
Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural i...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ostmo, Eirik A. Wickstrom, Kristoffer K. Radiya, Keyur Kampffmeyer, Michael C. Jenssen, Robert |
description | Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural images. For contrast-enhanced Computed Tomography (CT) images in particular, the signals producing the voxel intensities have physical meaning, which is lost during preprocessing and augmentation when treating such images as natural images. To address this, we propose a novel preprocessing and intensity augmentation scheme inspired by how radiologists leverage multiple viewing windows when evaluating CT images. Our proposed method, window shifting, randomly places the viewing windows around the region of interest during training. This approach improves liver lesion segmentation performance and robustness on images with poorly timed contrast agent. Our method outperforms classical intensity augmentations as well as the intensity augmentation pipeline of the popular nn-UNet on multiple datasets. |
doi_str_mv | 10.1109/MLSP55844.2023.10285978 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_32447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10285978</ieee_id><sourcerecordid>10285978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c143t-2f0ed0256fada45f985236199839164b7f39e483ba2732c36e38d87fae8c4efd3</originalsourceid><addsrcrecordid>eNo1kF9LwzAUxaMoOOa-gbB8gc7c3KRJfBvz36AycdP5VrL1pga3VtrK8NtbmD6d83A4nN9hbAxiAiDc9VO2fNbaKjWRQuIEhLTaGXvCRs44i1qgVADylA0kpJAINHDWezQ2cdK-X7BR28aN0AhCpwIGbP0W6cBjx7P4SdzzF1_EeleXse1u-PIjho4Kvo5VUR9aHuqG3xJ98Yx8U8Wq5NPvck9V57tYV3wR-GzF53tfUnvJzoPftTT60yF7vb9bzR6TbPEwn02zZAsKu0QGQYWQOg2-8EoHZ7XEFFzP4iBVGxPQkbK48dKg3GJKaAtrgie7VRQKHLLxsXfb9JNjlVd143MQPXnef6FMn7g6JiIR5V9N3PvmJ_9_Dn8B8NteaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images</title><source>IEEE Xplore All Conference Series</source><source>NORA - Norwegian Open Research Archives</source><creator>Ostmo, Eirik A. ; Wickstrom, Kristoffer K. ; Radiya, Keyur ; Kampffmeyer, Michael C. ; Jenssen, Robert</creator><creatorcontrib>Ostmo, Eirik A. ; Wickstrom, Kristoffer K. ; Radiya, Keyur ; Kampffmeyer, Michael C. ; Jenssen, Robert</creatorcontrib><description>Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural images. For contrast-enhanced Computed Tomography (CT) images in particular, the signals producing the voxel intensities have physical meaning, which is lost during preprocessing and augmentation when treating such images as natural images. To address this, we propose a novel preprocessing and intensity augmentation scheme inspired by how radiologists leverage multiple viewing windows when evaluating CT images. Our proposed method, window shifting, randomly places the viewing windows around the region of interest during training. This approach improves liver lesion segmentation performance and robustness on images with poorly timed contrast agent. Our method outperforms classical intensity augmentations as well as the intensity augmentation pipeline of the popular nn-UNet on multiple datasets.</description><identifier>ISSN: 2378-928X</identifier><identifier>ISSN: 1551-2541</identifier><identifier>EISSN: 2161-0371</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9798350324112</identifier><identifier>DOI: 10.1109/MLSP55844.2023.10285978</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computed tomography ; CT signals ; data augmentation ; Deep learning ; hounsfield units ; Image segmentation ; Liver ; medical imaging ; Pipelines ; preprocessing ; Segmentation ; Signal processing ; Training</subject><ispartof>2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP), 2023, p.1-6</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,777,781,882,4010,4036,4037,26548,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Ostmo, Eirik A.</creatorcontrib><creatorcontrib>Wickstrom, Kristoffer K.</creatorcontrib><creatorcontrib>Radiya, Keyur</creatorcontrib><creatorcontrib>Kampffmeyer, Michael C.</creatorcontrib><creatorcontrib>Jenssen, Robert</creatorcontrib><title>View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images</title><title>2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP)</title><addtitle>MLSP</addtitle><description>Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural images. For contrast-enhanced Computed Tomography (CT) images in particular, the signals producing the voxel intensities have physical meaning, which is lost during preprocessing and augmentation when treating such images as natural images. To address this, we propose a novel preprocessing and intensity augmentation scheme inspired by how radiologists leverage multiple viewing windows when evaluating CT images. Our proposed method, window shifting, randomly places the viewing windows around the region of interest during training. This approach improves liver lesion segmentation performance and robustness on images with poorly timed contrast agent. Our method outperforms classical intensity augmentations as well as the intensity augmentation pipeline of the popular nn-UNet on multiple datasets.</description><subject>Computed tomography</subject><subject>CT signals</subject><subject>data augmentation</subject><subject>Deep learning</subject><subject>hounsfield units</subject><subject>Image segmentation</subject><subject>Liver</subject><subject>medical imaging</subject><subject>Pipelines</subject><subject>preprocessing</subject><subject>Segmentation</subject><subject>Signal processing</subject><subject>Training</subject><issn>2378-928X</issn><issn>1551-2541</issn><issn>2161-0371</issn><issn>2378-928X</issn><isbn>9798350324112</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>3HK</sourceid><recordid>eNo1kF9LwzAUxaMoOOa-gbB8gc7c3KRJfBvz36AycdP5VrL1pga3VtrK8NtbmD6d83A4nN9hbAxiAiDc9VO2fNbaKjWRQuIEhLTaGXvCRs44i1qgVADylA0kpJAINHDWezQ2cdK-X7BR28aN0AhCpwIGbP0W6cBjx7P4SdzzF1_EeleXse1u-PIjho4Kvo5VUR9aHuqG3xJ98Yx8U8Wq5NPvck9V57tYV3wR-GzF53tfUnvJzoPftTT60yF7vb9bzR6TbPEwn02zZAsKu0QGQYWQOg2-8EoHZ7XEFFzP4iBVGxPQkbK48dKg3GJKaAtrgie7VRQKHLLxsXfb9JNjlVd143MQPXnef6FMn7g6JiIR5V9N3PvmJ_9_Dn8B8NteaA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ostmo, Eirik A.</creator><creator>Wickstrom, Kristoffer K.</creator><creator>Radiya, Keyur</creator><creator>Kampffmeyer, Michael C.</creator><creator>Jenssen, Robert</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>3HK</scope></search><sort><creationdate>2023</creationdate><title>View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images</title><author>Ostmo, Eirik A. ; Wickstrom, Kristoffer K. ; Radiya, Keyur ; Kampffmeyer, Michael C. ; Jenssen, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c143t-2f0ed0256fada45f985236199839164b7f39e483ba2732c36e38d87fae8c4efd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computed tomography</topic><topic>CT signals</topic><topic>data augmentation</topic><topic>Deep learning</topic><topic>hounsfield units</topic><topic>Image segmentation</topic><topic>Liver</topic><topic>medical imaging</topic><topic>Pipelines</topic><topic>preprocessing</topic><topic>Segmentation</topic><topic>Signal processing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ostmo, Eirik A.</creatorcontrib><creatorcontrib>Wickstrom, Kristoffer K.</creatorcontrib><creatorcontrib>Radiya, Keyur</creatorcontrib><creatorcontrib>Kampffmeyer, Michael C.</creatorcontrib><creatorcontrib>Jenssen, Robert</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostmo, Eirik A.</au><au>Wickstrom, Kristoffer K.</au><au>Radiya, Keyur</au><au>Kampffmeyer, Michael C.</au><au>Jenssen, Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images</atitle><btitle>2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP)</btitle><stitle>MLSP</stitle><date>2023</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2378-928X</issn><issn>1551-2541</issn><eissn>2161-0371</eissn><eissn>2378-928X</eissn><eisbn>9798350324112</eisbn><abstract>Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural images. For contrast-enhanced Computed Tomography (CT) images in particular, the signals producing the voxel intensities have physical meaning, which is lost during preprocessing and augmentation when treating such images as natural images. To address this, we propose a novel preprocessing and intensity augmentation scheme inspired by how radiologists leverage multiple viewing windows when evaluating CT images. Our proposed method, window shifting, randomly places the viewing windows around the region of interest during training. This approach improves liver lesion segmentation performance and robustness on images with poorly timed contrast agent. Our method outperforms classical intensity augmentations as well as the intensity augmentation pipeline of the popular nn-UNet on multiple datasets.</abstract><pub>IEEE</pub><doi>10.1109/MLSP55844.2023.10285978</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2378-928X |
ispartof | 2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP), 2023, p.1-6 |
issn | 2378-928X 1551-2541 2161-0371 2378-928X |
language | eng |
recordid | cdi_cristin_nora_10037_32447 |
source | IEEE Xplore All Conference Series; NORA - Norwegian Open Research Archives |
subjects | Computed tomography CT signals data augmentation Deep learning hounsfield units Image segmentation Liver medical imaging Pipelines preprocessing Segmentation Signal processing Training |
title | View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=View%20it%20Like%20a%20Radiologist:%20Shifted%20Windows%20for%20Deep%20Learning%20Augmentation%20Of%20CT%20Images&rft.btitle=2023%20IEEE%2033rd%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing%20(MLSP)&rft.au=Ostmo,%20Eirik%20A.&rft.date=2023&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2378-928X&rft.eissn=2161-0371&rft_id=info:doi/10.1109/MLSP55844.2023.10285978&rft.eisbn=9798350324112&rft_dat=%3Cieee_crist%3E10285978%3C/ieee_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c143t-2f0ed0256fada45f985236199839164b7f39e483ba2732c36e38d87fae8c4efd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10285978&rfr_iscdi=true |