Loading…

View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images

Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural i...

Full description

Saved in:
Bibliographic Details
Main Authors: Ostmo, Eirik A., Wickstrom, Kristoffer K., Radiya, Keyur, Kampffmeyer, Michael C., Jenssen, Robert
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Ostmo, Eirik A.
Wickstrom, Kristoffer K.
Radiya, Keyur
Kampffmeyer, Michael C.
Jenssen, Robert
description Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural images. For contrast-enhanced Computed Tomography (CT) images in particular, the signals producing the voxel intensities have physical meaning, which is lost during preprocessing and augmentation when treating such images as natural images. To address this, we propose a novel preprocessing and intensity augmentation scheme inspired by how radiologists leverage multiple viewing windows when evaluating CT images. Our proposed method, window shifting, randomly places the viewing windows around the region of interest during training. This approach improves liver lesion segmentation performance and robustness on images with poorly timed contrast agent. Our method outperforms classical intensity augmentations as well as the intensity augmentation pipeline of the popular nn-UNet on multiple datasets.
doi_str_mv 10.1109/MLSP55844.2023.10285978
format conference_proceeding
fullrecord <record><control><sourceid>ieee_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_32447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10285978</ieee_id><sourcerecordid>10285978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c143t-2f0ed0256fada45f985236199839164b7f39e483ba2732c36e38d87fae8c4efd3</originalsourceid><addsrcrecordid>eNo1kF9LwzAUxaMoOOa-gbB8gc7c3KRJfBvz36AycdP5VrL1pga3VtrK8NtbmD6d83A4nN9hbAxiAiDc9VO2fNbaKjWRQuIEhLTaGXvCRs44i1qgVADylA0kpJAINHDWezQ2cdK-X7BR28aN0AhCpwIGbP0W6cBjx7P4SdzzF1_EeleXse1u-PIjho4Kvo5VUR9aHuqG3xJ98Yx8U8Wq5NPvck9V57tYV3wR-GzF53tfUnvJzoPftTT60yF7vb9bzR6TbPEwn02zZAsKu0QGQYWQOg2-8EoHZ7XEFFzP4iBVGxPQkbK48dKg3GJKaAtrgie7VRQKHLLxsXfb9JNjlVd143MQPXnef6FMn7g6JiIR5V9N3PvmJ_9_Dn8B8NteaA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images</title><source>IEEE Xplore All Conference Series</source><source>NORA - Norwegian Open Research Archives</source><creator>Ostmo, Eirik A. ; Wickstrom, Kristoffer K. ; Radiya, Keyur ; Kampffmeyer, Michael C. ; Jenssen, Robert</creator><creatorcontrib>Ostmo, Eirik A. ; Wickstrom, Kristoffer K. ; Radiya, Keyur ; Kampffmeyer, Michael C. ; Jenssen, Robert</creatorcontrib><description>Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural images. For contrast-enhanced Computed Tomography (CT) images in particular, the signals producing the voxel intensities have physical meaning, which is lost during preprocessing and augmentation when treating such images as natural images. To address this, we propose a novel preprocessing and intensity augmentation scheme inspired by how radiologists leverage multiple viewing windows when evaluating CT images. Our proposed method, window shifting, randomly places the viewing windows around the region of interest during training. This approach improves liver lesion segmentation performance and robustness on images with poorly timed contrast agent. Our method outperforms classical intensity augmentations as well as the intensity augmentation pipeline of the popular nn-UNet on multiple datasets.</description><identifier>ISSN: 2378-928X</identifier><identifier>ISSN: 1551-2541</identifier><identifier>EISSN: 2161-0371</identifier><identifier>EISSN: 2378-928X</identifier><identifier>EISBN: 9798350324112</identifier><identifier>DOI: 10.1109/MLSP55844.2023.10285978</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computed tomography ; CT signals ; data augmentation ; Deep learning ; hounsfield units ; Image segmentation ; Liver ; medical imaging ; Pipelines ; preprocessing ; Segmentation ; Signal processing ; Training</subject><ispartof>2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP), 2023, p.1-6</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,777,781,882,4010,4036,4037,26548,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Ostmo, Eirik A.</creatorcontrib><creatorcontrib>Wickstrom, Kristoffer K.</creatorcontrib><creatorcontrib>Radiya, Keyur</creatorcontrib><creatorcontrib>Kampffmeyer, Michael C.</creatorcontrib><creatorcontrib>Jenssen, Robert</creatorcontrib><title>View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images</title><title>2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP)</title><addtitle>MLSP</addtitle><description>Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural images. For contrast-enhanced Computed Tomography (CT) images in particular, the signals producing the voxel intensities have physical meaning, which is lost during preprocessing and augmentation when treating such images as natural images. To address this, we propose a novel preprocessing and intensity augmentation scheme inspired by how radiologists leverage multiple viewing windows when evaluating CT images. Our proposed method, window shifting, randomly places the viewing windows around the region of interest during training. This approach improves liver lesion segmentation performance and robustness on images with poorly timed contrast agent. Our method outperforms classical intensity augmentations as well as the intensity augmentation pipeline of the popular nn-UNet on multiple datasets.</description><subject>Computed tomography</subject><subject>CT signals</subject><subject>data augmentation</subject><subject>Deep learning</subject><subject>hounsfield units</subject><subject>Image segmentation</subject><subject>Liver</subject><subject>medical imaging</subject><subject>Pipelines</subject><subject>preprocessing</subject><subject>Segmentation</subject><subject>Signal processing</subject><subject>Training</subject><issn>2378-928X</issn><issn>1551-2541</issn><issn>2161-0371</issn><issn>2378-928X</issn><isbn>9798350324112</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>3HK</sourceid><recordid>eNo1kF9LwzAUxaMoOOa-gbB8gc7c3KRJfBvz36AycdP5VrL1pga3VtrK8NtbmD6d83A4nN9hbAxiAiDc9VO2fNbaKjWRQuIEhLTaGXvCRs44i1qgVADylA0kpJAINHDWezQ2cdK-X7BR28aN0AhCpwIGbP0W6cBjx7P4SdzzF1_EeleXse1u-PIjho4Kvo5VUR9aHuqG3xJ98Yx8U8Wq5NPvck9V57tYV3wR-GzF53tfUnvJzoPftTT60yF7vb9bzR6TbPEwn02zZAsKu0QGQYWQOg2-8EoHZ7XEFFzP4iBVGxPQkbK48dKg3GJKaAtrgie7VRQKHLLxsXfb9JNjlVd143MQPXnef6FMn7g6JiIR5V9N3PvmJ_9_Dn8B8NteaA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Ostmo, Eirik A.</creator><creator>Wickstrom, Kristoffer K.</creator><creator>Radiya, Keyur</creator><creator>Kampffmeyer, Michael C.</creator><creator>Jenssen, Robert</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>3HK</scope></search><sort><creationdate>2023</creationdate><title>View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images</title><author>Ostmo, Eirik A. ; Wickstrom, Kristoffer K. ; Radiya, Keyur ; Kampffmeyer, Michael C. ; Jenssen, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c143t-2f0ed0256fada45f985236199839164b7f39e483ba2732c36e38d87fae8c4efd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computed tomography</topic><topic>CT signals</topic><topic>data augmentation</topic><topic>Deep learning</topic><topic>hounsfield units</topic><topic>Image segmentation</topic><topic>Liver</topic><topic>medical imaging</topic><topic>Pipelines</topic><topic>preprocessing</topic><topic>Segmentation</topic><topic>Signal processing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ostmo, Eirik A.</creatorcontrib><creatorcontrib>Wickstrom, Kristoffer K.</creatorcontrib><creatorcontrib>Radiya, Keyur</creatorcontrib><creatorcontrib>Kampffmeyer, Michael C.</creatorcontrib><creatorcontrib>Jenssen, Robert</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostmo, Eirik A.</au><au>Wickstrom, Kristoffer K.</au><au>Radiya, Keyur</au><au>Kampffmeyer, Michael C.</au><au>Jenssen, Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images</atitle><btitle>2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP)</btitle><stitle>MLSP</stitle><date>2023</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2378-928X</issn><issn>1551-2541</issn><eissn>2161-0371</eissn><eissn>2378-928X</eissn><eisbn>9798350324112</eisbn><abstract>Deep learning has the potential to revolutionize medical practice by automating and performing important tasks like detecting and delineating the size and locations of cancers in medical images. However, most deep learning models rely on augmentation techniques that treat medical images as natural images. For contrast-enhanced Computed Tomography (CT) images in particular, the signals producing the voxel intensities have physical meaning, which is lost during preprocessing and augmentation when treating such images as natural images. To address this, we propose a novel preprocessing and intensity augmentation scheme inspired by how radiologists leverage multiple viewing windows when evaluating CT images. Our proposed method, window shifting, randomly places the viewing windows around the region of interest during training. This approach improves liver lesion segmentation performance and robustness on images with poorly timed contrast agent. Our method outperforms classical intensity augmentations as well as the intensity augmentation pipeline of the popular nn-UNet on multiple datasets.</abstract><pub>IEEE</pub><doi>10.1109/MLSP55844.2023.10285978</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2378-928X
ispartof 2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP), 2023, p.1-6
issn 2378-928X
1551-2541
2161-0371
2378-928X
language eng
recordid cdi_cristin_nora_10037_32447
source IEEE Xplore All Conference Series; NORA - Norwegian Open Research Archives
subjects Computed tomography
CT signals
data augmentation
Deep learning
hounsfield units
Image segmentation
Liver
medical imaging
Pipelines
preprocessing
Segmentation
Signal processing
Training
title View it Like a Radiologist: Shifted Windows for Deep Learning Augmentation Of CT Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=View%20it%20Like%20a%20Radiologist:%20Shifted%20Windows%20for%20Deep%20Learning%20Augmentation%20Of%20CT%20Images&rft.btitle=2023%20IEEE%2033rd%20International%20Workshop%20on%20Machine%20Learning%20for%20Signal%20Processing%20(MLSP)&rft.au=Ostmo,%20Eirik%20A.&rft.date=2023&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2378-928X&rft.eissn=2161-0371&rft_id=info:doi/10.1109/MLSP55844.2023.10285978&rft.eisbn=9798350324112&rft_dat=%3Cieee_crist%3E10285978%3C/ieee_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c143t-2f0ed0256fada45f985236199839164b7f39e483ba2732c36e38d87fae8c4efd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10285978&rfr_iscdi=true