Loading…

Using neural networks to examine trending keywords in Inventory Control

Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention N...

Full description

Saved in:
Bibliographic Details
Published in:Production Engineering Archives 2023
Main Authors: Sadowski, Adam, Sadowski, Michał, Engelseth, Per, Galar, Zbigniew, Skowron-Grabowska, Beata
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Production Engineering Archives
container_volume
creator Sadowski, Adam
Sadowski, Michał
Engelseth, Per
Galar, Zbigniew
Skowron-Grabowska, Beata
description Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.
doi_str_mv 10.30657/pea.2023.29.52
format article
fullrecord <record><control><sourceid>cristin</sourceid><recordid>TN_cdi_cristin_nora_10037_33221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10037_33221</sourcerecordid><originalsourceid>FETCH-cristin_nora_10037_332213</originalsourceid><addsrcrecordid>eNqFissKwjAQAIMoKOrZo_kB6zZLGnsuvu56LkGjxNaNJPHRv7dC755mYIaxWQoJQibV8mF0IkBgIvJEih4bCZS4UErl_c5lKrMhm4ZwAwABOWC-GrHtMVi6cjJPr-sW8e18FXh03Hz03ZLh0Rs6_57KNG08B26J7-llKDrf8MJR9K6esMFF18FMO47ZfLM-FLvFydsQLZXkvC5TAFQlohAp_j--AlE_jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using neural networks to examine trending keywords in Inventory Control</title><source>NORA - Norwegian Open Research Archives</source><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Sadowski, Adam ; Sadowski, Michał ; Engelseth, Per ; Galar, Zbigniew ; Skowron-Grabowska, Beata</creator><creatorcontrib>Sadowski, Adam ; Sadowski, Michał ; Engelseth, Per ; Galar, Zbigniew ; Skowron-Grabowska, Beata</creatorcontrib><description>Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.</description><identifier>ISSN: 2353-5156</identifier><identifier>ISSN: 2353-7779</identifier><identifier>EISSN: 2353-7779</identifier><identifier>DOI: 10.30657/pea.2023.29.52</identifier><language>eng</language><publisher>Sciendo</publisher><ispartof>Production Engineering Archives, 2023</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,26567,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sadowski, Adam</creatorcontrib><creatorcontrib>Sadowski, Michał</creatorcontrib><creatorcontrib>Engelseth, Per</creatorcontrib><creatorcontrib>Galar, Zbigniew</creatorcontrib><creatorcontrib>Skowron-Grabowska, Beata</creatorcontrib><title>Using neural networks to examine trending keywords in Inventory Control</title><title>Production Engineering Archives</title><description>Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.</description><issn>2353-5156</issn><issn>2353-7779</issn><issn>2353-7779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqFissKwjAQAIMoKOrZo_kB6zZLGnsuvu56LkGjxNaNJPHRv7dC755mYIaxWQoJQibV8mF0IkBgIvJEih4bCZS4UErl_c5lKrMhm4ZwAwABOWC-GrHtMVi6cjJPr-sW8e18FXh03Hz03ZLh0Rs6_57KNG08B26J7-llKDrf8MJR9K6esMFF18FMO47ZfLM-FLvFydsQLZXkvC5TAFQlohAp_j--AlE_jw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Sadowski, Adam</creator><creator>Sadowski, Michał</creator><creator>Engelseth, Per</creator><creator>Galar, Zbigniew</creator><creator>Skowron-Grabowska, Beata</creator><general>Sciendo</general><scope>3HK</scope></search><sort><creationdate>2023</creationdate><title>Using neural networks to examine trending keywords in Inventory Control</title><author>Sadowski, Adam ; Sadowski, Michał ; Engelseth, Per ; Galar, Zbigniew ; Skowron-Grabowska, Beata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10037_332213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadowski, Adam</creatorcontrib><creatorcontrib>Sadowski, Michał</creatorcontrib><creatorcontrib>Engelseth, Per</creatorcontrib><creatorcontrib>Galar, Zbigniew</creatorcontrib><creatorcontrib>Skowron-Grabowska, Beata</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Production Engineering Archives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadowski, Adam</au><au>Sadowski, Michał</au><au>Engelseth, Per</au><au>Galar, Zbigniew</au><au>Skowron-Grabowska, Beata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using neural networks to examine trending keywords in Inventory Control</atitle><jtitle>Production Engineering Archives</jtitle><date>2023</date><risdate>2023</risdate><issn>2353-5156</issn><issn>2353-7779</issn><eissn>2353-7779</eissn><abstract>Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.</abstract><pub>Sciendo</pub><doi>10.30657/pea.2023.29.52</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2353-5156
ispartof Production Engineering Archives, 2023
issn 2353-5156
2353-7779
2353-7779
language eng
recordid cdi_cristin_nora_10037_33221
source NORA - Norwegian Open Research Archives; ROAD: Directory of Open Access Scholarly Resources
title Using neural networks to examine trending keywords in Inventory Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20neural%20networks%20to%20examine%20trending%20keywords%20in%20Inventory%20Control&rft.jtitle=Production%20Engineering%20Archives&rft.au=Sadowski,%20Adam&rft.date=2023&rft.issn=2353-5156&rft.eissn=2353-7779&rft_id=info:doi/10.30657/pea.2023.29.52&rft_dat=%3Ccristin%3E10037_33221%3C/cristin%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_10037_332213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true