Loading…
Using neural networks to examine trending keywords in Inventory Control
Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention N...
Saved in:
Published in: | Production Engineering Archives 2023 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Production Engineering Archives |
container_volume | |
creator | Sadowski, Adam Sadowski, Michał Engelseth, Per Galar, Zbigniew Skowron-Grabowska, Beata |
description | Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge. |
doi_str_mv | 10.30657/pea.2023.29.52 |
format | article |
fullrecord | <record><control><sourceid>cristin</sourceid><recordid>TN_cdi_cristin_nora_10037_33221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10037_33221</sourcerecordid><originalsourceid>FETCH-cristin_nora_10037_332213</originalsourceid><addsrcrecordid>eNqFissKwjAQAIMoKOrZo_kB6zZLGnsuvu56LkGjxNaNJPHRv7dC755mYIaxWQoJQibV8mF0IkBgIvJEih4bCZS4UErl_c5lKrMhm4ZwAwABOWC-GrHtMVi6cjJPr-sW8e18FXh03Hz03ZLh0Rs6_57KNG08B26J7-llKDrf8MJR9K6esMFF18FMO47ZfLM-FLvFydsQLZXkvC5TAFQlohAp_j--AlE_jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using neural networks to examine trending keywords in Inventory Control</title><source>NORA - Norwegian Open Research Archives</source><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Sadowski, Adam ; Sadowski, Michał ; Engelseth, Per ; Galar, Zbigniew ; Skowron-Grabowska, Beata</creator><creatorcontrib>Sadowski, Adam ; Sadowski, Michał ; Engelseth, Per ; Galar, Zbigniew ; Skowron-Grabowska, Beata</creatorcontrib><description>Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.</description><identifier>ISSN: 2353-5156</identifier><identifier>ISSN: 2353-7779</identifier><identifier>EISSN: 2353-7779</identifier><identifier>DOI: 10.30657/pea.2023.29.52</identifier><language>eng</language><publisher>Sciendo</publisher><ispartof>Production Engineering Archives, 2023</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,26567,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sadowski, Adam</creatorcontrib><creatorcontrib>Sadowski, Michał</creatorcontrib><creatorcontrib>Engelseth, Per</creatorcontrib><creatorcontrib>Galar, Zbigniew</creatorcontrib><creatorcontrib>Skowron-Grabowska, Beata</creatorcontrib><title>Using neural networks to examine trending keywords in Inventory Control</title><title>Production Engineering Archives</title><description>Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.</description><issn>2353-5156</issn><issn>2353-7779</issn><issn>2353-7779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqFissKwjAQAIMoKOrZo_kB6zZLGnsuvu56LkGjxNaNJPHRv7dC755mYIaxWQoJQibV8mF0IkBgIvJEih4bCZS4UErl_c5lKrMhm4ZwAwABOWC-GrHtMVi6cjJPr-sW8e18FXh03Hz03ZLh0Rs6_57KNG08B26J7-llKDrf8MJR9K6esMFF18FMO47ZfLM-FLvFydsQLZXkvC5TAFQlohAp_j--AlE_jw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Sadowski, Adam</creator><creator>Sadowski, Michał</creator><creator>Engelseth, Per</creator><creator>Galar, Zbigniew</creator><creator>Skowron-Grabowska, Beata</creator><general>Sciendo</general><scope>3HK</scope></search><sort><creationdate>2023</creationdate><title>Using neural networks to examine trending keywords in Inventory Control</title><author>Sadowski, Adam ; Sadowski, Michał ; Engelseth, Per ; Galar, Zbigniew ; Skowron-Grabowska, Beata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10037_332213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadowski, Adam</creatorcontrib><creatorcontrib>Sadowski, Michał</creatorcontrib><creatorcontrib>Engelseth, Per</creatorcontrib><creatorcontrib>Galar, Zbigniew</creatorcontrib><creatorcontrib>Skowron-Grabowska, Beata</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Production Engineering Archives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadowski, Adam</au><au>Sadowski, Michał</au><au>Engelseth, Per</au><au>Galar, Zbigniew</au><au>Skowron-Grabowska, Beata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using neural networks to examine trending keywords in Inventory Control</atitle><jtitle>Production Engineering Archives</jtitle><date>2023</date><risdate>2023</risdate><issn>2353-5156</issn><issn>2353-7779</issn><eissn>2353-7779</eissn><abstract>Inventory control is one of the key areas of research in logistics. Using the SCOPUS database, we have processed 9,829 articles on inventory control using triangulation of statistical methods and machine learning. We have proven the usefulness of the proposed statistical method and Graph Attention Network (GAT) architecture for determining trend-setting keywords in inventory control research. We have demonstrated the changes in the research conducted between 1950 and 2021 by presenting the evolution of keywords in articles. A novelty of our research is the applied approach to bibliometric analysis using unsupervised deep learning. It allows to identify the keywords that determined the high citation rate of the article. The theoretical framework for the intellectual structure of research proposed in the studies on inventory control is general and can be applied to any area of knowledge.</abstract><pub>Sciendo</pub><doi>10.30657/pea.2023.29.52</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2353-5156 |
ispartof | Production Engineering Archives, 2023 |
issn | 2353-5156 2353-7779 2353-7779 |
language | eng |
recordid | cdi_cristin_nora_10037_33221 |
source | NORA - Norwegian Open Research Archives; ROAD: Directory of Open Access Scholarly Resources |
title | Using neural networks to examine trending keywords in Inventory Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20neural%20networks%20to%20examine%20trending%20keywords%20in%20Inventory%20Control&rft.jtitle=Production%20Engineering%20Archives&rft.au=Sadowski,%20Adam&rft.date=2023&rft.issn=2353-5156&rft.eissn=2353-7779&rft_id=info:doi/10.30657/pea.2023.29.52&rft_dat=%3Ccristin%3E10037_33221%3C/cristin%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_10037_332213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |