Loading…

A Hybrid of Bacterial Foraging and Differential Evolution -based Distance of Sequences

In a previous work we presented a new distance that we called the sigma gram distance, which is used to compute the similarity between two sequences. This distance is based on parameters which we computed through an optimization process that used the artificial bee colony; a bio-inspired optimizatio...

Full description

Saved in:
Bibliographic Details
Published in:Procedia computer science 2014, Vol.35, p.101-110
Main Author: Fuad, Muhammad Marwan Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-a2981fa0590dba26a4281877d602efe249b3ebca05810893d9ad87efe13ee0f43
cites cdi_FETCH-LOGICAL-c371t-a2981fa0590dba26a4281877d602efe249b3ebca05810893d9ad87efe13ee0f43
container_end_page 110
container_issue
container_start_page 101
container_title Procedia computer science
container_volume 35
creator Fuad, Muhammad Marwan Muhammad
description In a previous work we presented a new distance that we called the sigma gram distance, which is used to compute the similarity between two sequences. This distance is based on parameters which we computed through an optimization process that used the artificial bee colony; a bio-inspired optimization algorithm. In this paper we show how a hybrid of two optimization algorithms; bacterial foraging and differential evolution, when used to compute the parameters of the sigma gram distance, can yield better results than those obtained by applying artificial bee colony. This superiority in performance is validated through experiments on the same data sets to which artificial bee colony, on the same optimization problem, was tested.
doi_str_mv 10.1016/j.procs.2014.08.089
format article
fullrecord <record><control><sourceid>elsevier_crist</sourceid><recordid>TN_cdi_cristin_nora_10037_7204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1877050914010540</els_id><sourcerecordid>S1877050914010540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a2981fa0590dba26a4281877d602efe249b3ebca05810893d9ad87efe13ee0f43</originalsourceid><addsrcrecordid>eNp9UNtKAzEQDaJgqf0CQfYHds1l22QffKi1tULBBy-vIZtMSkrN1mRb6N-bWAWfHAIzcM5MzjkIXRNcEUwmt5tqFzodK4pJXWGRXnOGBkRwXuIxbs7_zJdoFOMGp2JCNIQP0Pu0WB7b4EzR2eJe6R6CU9ti0QW1dn5dKG-KB2ctBPB9RuaHbrvvXeeLslURMhp75TXkAy_wuYc0xyt0YdU2wuinD9HbYv46W5ar58en2XRVasZJXyraCGIVHjfYtIpOVE1FFmsmmIIFWjctg1YngiDJFjONMoInhDAAbGs2RDenuzokGc5Ln4RLkvxxySnOBPZL6GIMYOUuuA8Vjokkc3xyI7_jkzk-iYXM_wzR3WkLkvaDgyCjdtmYcQF0L03n_t3_AiLneKM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Hybrid of Bacterial Foraging and Differential Evolution -based Distance of Sequences</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>NORA - Norwegian Open Research Archives</source><source>ScienceDirect®</source><creator>Fuad, Muhammad Marwan Muhammad</creator><creatorcontrib>Fuad, Muhammad Marwan Muhammad</creatorcontrib><description>In a previous work we presented a new distance that we called the sigma gram distance, which is used to compute the similarity between two sequences. This distance is based on parameters which we computed through an optimization process that used the artificial bee colony; a bio-inspired optimization algorithm. In this paper we show how a hybrid of two optimization algorithms; bacterial foraging and differential evolution, when used to compute the parameters of the sigma gram distance, can yield better results than those obtained by applying artificial bee colony. This superiority in performance is validated through experiments on the same data sets to which artificial bee colony, on the same optimization problem, was tested.</description><identifier>ISSN: 1877-0509</identifier><identifier>EISSN: 1877-0509</identifier><identifier>DOI: 10.1016/j.procs.2014.08.089</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>422:Algorithms and computability theory ; 422:Algoritmer og beregnbarhetsteori ; Bacterial Foraging ; Differential Evolution ; Sigma Gram Distance</subject><ispartof>Procedia computer science, 2014, Vol.35, p.101-110</ispartof><rights>2014 The Authors</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a2981fa0590dba26a4281877d602efe249b3ebca05810893d9ad87efe13ee0f43</citedby><cites>FETCH-LOGICAL-c371t-a2981fa0590dba26a4281877d602efe249b3ebca05810893d9ad87efe13ee0f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1877050914010540$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3547,4021,26565,27921,27922,27923,45778</link.rule.ids></links><search><creatorcontrib>Fuad, Muhammad Marwan Muhammad</creatorcontrib><title>A Hybrid of Bacterial Foraging and Differential Evolution -based Distance of Sequences</title><title>Procedia computer science</title><description>In a previous work we presented a new distance that we called the sigma gram distance, which is used to compute the similarity between two sequences. This distance is based on parameters which we computed through an optimization process that used the artificial bee colony; a bio-inspired optimization algorithm. In this paper we show how a hybrid of two optimization algorithms; bacterial foraging and differential evolution, when used to compute the parameters of the sigma gram distance, can yield better results than those obtained by applying artificial bee colony. This superiority in performance is validated through experiments on the same data sets to which artificial bee colony, on the same optimization problem, was tested.</description><subject>422:Algorithms and computability theory</subject><subject>422:Algoritmer og beregnbarhetsteori</subject><subject>Bacterial Foraging</subject><subject>Differential Evolution</subject><subject>Sigma Gram Distance</subject><issn>1877-0509</issn><issn>1877-0509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9UNtKAzEQDaJgqf0CQfYHds1l22QffKi1tULBBy-vIZtMSkrN1mRb6N-bWAWfHAIzcM5MzjkIXRNcEUwmt5tqFzodK4pJXWGRXnOGBkRwXuIxbs7_zJdoFOMGp2JCNIQP0Pu0WB7b4EzR2eJe6R6CU9ti0QW1dn5dKG-KB2ctBPB9RuaHbrvvXeeLslURMhp75TXkAy_wuYc0xyt0YdU2wuinD9HbYv46W5ar58en2XRVasZJXyraCGIVHjfYtIpOVE1FFmsmmIIFWjctg1YngiDJFjONMoInhDAAbGs2RDenuzokGc5Ln4RLkvxxySnOBPZL6GIMYOUuuA8Vjokkc3xyI7_jkzk-iYXM_wzR3WkLkvaDgyCjdtmYcQF0L03n_t3_AiLneKM</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Fuad, Muhammad Marwan Muhammad</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope></search><sort><creationdate>2014</creationdate><title>A Hybrid of Bacterial Foraging and Differential Evolution -based Distance of Sequences</title><author>Fuad, Muhammad Marwan Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a2981fa0590dba26a4281877d602efe249b3ebca05810893d9ad87efe13ee0f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>422:Algorithms and computability theory</topic><topic>422:Algoritmer og beregnbarhetsteori</topic><topic>Bacterial Foraging</topic><topic>Differential Evolution</topic><topic>Sigma Gram Distance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuad, Muhammad Marwan Muhammad</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Procedia computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuad, Muhammad Marwan Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid of Bacterial Foraging and Differential Evolution -based Distance of Sequences</atitle><jtitle>Procedia computer science</jtitle><date>2014</date><risdate>2014</risdate><volume>35</volume><spage>101</spage><epage>110</epage><pages>101-110</pages><issn>1877-0509</issn><eissn>1877-0509</eissn><abstract>In a previous work we presented a new distance that we called the sigma gram distance, which is used to compute the similarity between two sequences. This distance is based on parameters which we computed through an optimization process that used the artificial bee colony; a bio-inspired optimization algorithm. In this paper we show how a hybrid of two optimization algorithms; bacterial foraging and differential evolution, when used to compute the parameters of the sigma gram distance, can yield better results than those obtained by applying artificial bee colony. This superiority in performance is validated through experiments on the same data sets to which artificial bee colony, on the same optimization problem, was tested.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.procs.2014.08.089</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1877-0509
ispartof Procedia computer science, 2014, Vol.35, p.101-110
issn 1877-0509
1877-0509
language eng
recordid cdi_cristin_nora_10037_7204
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; NORA - Norwegian Open Research Archives; ScienceDirect®
subjects 422:Algorithms and computability theory
422:Algoritmer og beregnbarhetsteori
Bacterial Foraging
Differential Evolution
Sigma Gram Distance
title A Hybrid of Bacterial Foraging and Differential Evolution -based Distance of Sequences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20of%20Bacterial%20Foraging%20and%20Differential%20Evolution%20-based%20Distance%20of%20Sequences&rft.jtitle=Procedia%20computer%20science&rft.au=Fuad,%20Muhammad%20Marwan%20Muhammad&rft.date=2014&rft.volume=35&rft.spage=101&rft.epage=110&rft.pages=101-110&rft.issn=1877-0509&rft.eissn=1877-0509&rft_id=info:doi/10.1016/j.procs.2014.08.089&rft_dat=%3Celsevier_crist%3ES1877050914010540%3C/elsevier_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-a2981fa0590dba26a4281877d602efe249b3ebca05810893d9ad87efe13ee0f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true