Loading…
NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of nonlinear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Report |
Language: | English |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Amadori, Anna Lisa Karlsen, Kenneth H La Chioma, Claudia |
description | We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of nonlinear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the ``geometric form'' of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations and (ii) pricing of European and American derivatives via backward stochastic differential equations. Regarding (i), we extend previous results on backward stochastic differential equations in a Lévy setting and the connection to semilinear integro--partial differential equations. |
format | report |
fullrecord | <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_10609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10852_10609</sourcerecordid><originalsourceid>FETCH-cristin_nora_10852_106093</originalsourceid><addsrcrecordid>eNqFjU0OAUEQhWdjITiDuoBkEMKydNeMjtY9qguxkomQTCIjwSUcxTlczBAWVjbvJ3lfXj26O--scYQMmlJyxCgExgml7DsZshi0oE2SEJN7F1p5uxTjHdBiia8QgMlWnAbxkJKfk7BRYB-31QYy9opCoADoNGCWWaM-VLWeoJqtkTUE8WqKQSru9-370Yxqh_x42bc-3ojaCYmadnbn4nItym15Oufbbjwa9CodxuP-_8UT2-9H1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS</title><source>NORA - Norwegian Open Research Archives</source><creator>Amadori, Anna Lisa ; Karlsen, Kenneth H ; La Chioma, Claudia</creator><creatorcontrib>Amadori, Anna Lisa ; Karlsen, Kenneth H ; La Chioma, Claudia</creatorcontrib><description>We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of nonlinear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the ``geometric form'' of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations and (ii) pricing of European and American derivatives via backward stochastic differential equations. Regarding (i), we extend previous results on backward stochastic differential equations in a Lévy setting and the connection to semilinear integro--partial differential equations.</description><language>eng</language><publisher>Matematisk Institutt, Universitetet i Oslo</publisher><creationdate>2004</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,4488,26566</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/10609$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Amadori, Anna Lisa</creatorcontrib><creatorcontrib>Karlsen, Kenneth H</creatorcontrib><creatorcontrib>La Chioma, Claudia</creatorcontrib><title>NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS</title><description>We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of nonlinear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the ``geometric form'' of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations and (ii) pricing of European and American derivatives via backward stochastic differential equations. Regarding (i), we extend previous results on backward stochastic differential equations in a Lévy setting and the connection to semilinear integro--partial differential equations.</description><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2004</creationdate><recordtype>report</recordtype><sourceid>3HK</sourceid><recordid>eNqFjU0OAUEQhWdjITiDuoBkEMKydNeMjtY9qguxkomQTCIjwSUcxTlczBAWVjbvJ3lfXj26O--scYQMmlJyxCgExgml7DsZshi0oE2SEJN7F1p5uxTjHdBiia8QgMlWnAbxkJKfk7BRYB-31QYy9opCoADoNGCWWaM-VLWeoJqtkTUE8WqKQSru9-370Yxqh_x42bc-3ojaCYmadnbn4nItym15Oufbbjwa9CodxuP-_8UT2-9H1Q</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Amadori, Anna Lisa</creator><creator>Karlsen, Kenneth H</creator><creator>La Chioma, Claudia</creator><general>Matematisk Institutt, Universitetet i Oslo</general><scope>3HK</scope></search><sort><creationdate>2004</creationdate><title>NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS</title><author>Amadori, Anna Lisa ; Karlsen, Kenneth H ; La Chioma, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10852_106093</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Amadori, Anna Lisa</creatorcontrib><creatorcontrib>Karlsen, Kenneth H</creatorcontrib><creatorcontrib>La Chioma, Claudia</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amadori, Anna Lisa</au><au>Karlsen, Kenneth H</au><au>La Chioma, Claudia</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS</btitle><date>2004</date><risdate>2004</risdate><abstract>We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of nonlinear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the ``geometric form'' of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations and (ii) pricing of European and American derivatives via backward stochastic differential equations. Regarding (i), we extend previous results on backward stochastic differential equations in a Lévy setting and the connection to semilinear integro--partial differential equations.</abstract><pub>Matematisk Institutt, Universitetet i Oslo</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_cristin_nora_10852_10609 |
source | NORA - Norwegian Open Research Archives |
title | NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=NONLINEAR%20DEGENERATE%20INTEGRO-PARTIAL%20DIFFERENTIAL%20EVOLUTION%20EQUATIONS%20RELATED%20TO%20GEOMETRIC%20L%C3%89VY%20PROCESSES%20AND%20APPLICATIONS%20TO%20BACKWARD%20STOCHASTIC%20DIFFERENTIAL%20EQUATIONS&rft.au=Amadori,%20Anna%20Lisa&rft.date=2004&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E10852_10609%3C/cristin_3HK%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_10852_106093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |