Loading…

NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of nonlinear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for th...

Full description

Saved in:
Bibliographic Details
Main Authors: Amadori, Anna Lisa, Karlsen, Kenneth H, La Chioma, Claudia
Format: Report
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Amadori, Anna Lisa
Karlsen, Kenneth H
La Chioma, Claudia
description We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of nonlinear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the ``geometric form'' of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations and (ii) pricing of European and American derivatives via backward stochastic differential equations. Regarding (i), we extend previous results on backward stochastic differential equations in a Lévy setting and the connection to semilinear integro--partial differential equations.
format report
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_10609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10852_10609</sourcerecordid><originalsourceid>FETCH-cristin_nora_10852_106093</originalsourceid><addsrcrecordid>eNqFjU0OAUEQhWdjITiDuoBkEMKydNeMjtY9qguxkomQTCIjwSUcxTlczBAWVjbvJ3lfXj26O--scYQMmlJyxCgExgml7DsZshi0oE2SEJN7F1p5uxTjHdBiia8QgMlWnAbxkJKfk7BRYB-31QYy9opCoADoNGCWWaM-VLWeoJqtkTUE8WqKQSru9-370Yxqh_x42bc-3ojaCYmadnbn4nItym15Oufbbjwa9CodxuP-_8UT2-9H1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS</title><source>NORA - Norwegian Open Research Archives</source><creator>Amadori, Anna Lisa ; Karlsen, Kenneth H ; La Chioma, Claudia</creator><creatorcontrib>Amadori, Anna Lisa ; Karlsen, Kenneth H ; La Chioma, Claudia</creatorcontrib><description>We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of nonlinear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the ``geometric form'' of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations and (ii) pricing of European and American derivatives via backward stochastic differential equations. Regarding (i), we extend previous results on backward stochastic differential equations in a Lévy setting and the connection to semilinear integro--partial differential equations.</description><language>eng</language><publisher>Matematisk Institutt, Universitetet i Oslo</publisher><creationdate>2004</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,4488,26566</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/10609$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Amadori, Anna Lisa</creatorcontrib><creatorcontrib>Karlsen, Kenneth H</creatorcontrib><creatorcontrib>La Chioma, Claudia</creatorcontrib><title>NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS</title><description>We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of nonlinear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the ``geometric form'' of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations and (ii) pricing of European and American derivatives via backward stochastic differential equations. Regarding (i), we extend previous results on backward stochastic differential equations in a Lévy setting and the connection to semilinear integro--partial differential equations.</description><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2004</creationdate><recordtype>report</recordtype><sourceid>3HK</sourceid><recordid>eNqFjU0OAUEQhWdjITiDuoBkEMKydNeMjtY9qguxkomQTCIjwSUcxTlczBAWVjbvJ3lfXj26O--scYQMmlJyxCgExgml7DsZshi0oE2SEJN7F1p5uxTjHdBiia8QgMlWnAbxkJKfk7BRYB-31QYy9opCoADoNGCWWaM-VLWeoJqtkTUE8WqKQSru9-370Yxqh_x42bc-3ojaCYmadnbn4nItym15Oufbbjwa9CodxuP-_8UT2-9H1Q</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Amadori, Anna Lisa</creator><creator>Karlsen, Kenneth H</creator><creator>La Chioma, Claudia</creator><general>Matematisk Institutt, Universitetet i Oslo</general><scope>3HK</scope></search><sort><creationdate>2004</creationdate><title>NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS</title><author>Amadori, Anna Lisa ; Karlsen, Kenneth H ; La Chioma, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_10852_106093</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Amadori, Anna Lisa</creatorcontrib><creatorcontrib>Karlsen, Kenneth H</creatorcontrib><creatorcontrib>La Chioma, Claudia</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amadori, Anna Lisa</au><au>Karlsen, Kenneth H</au><au>La Chioma, Claudia</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS</btitle><date>2004</date><risdate>2004</risdate><abstract>We prove a comparison principle for unbounded semicontinuous viscosity sub- and supersolutions of nonlinear degenerate parabolic integro-partial differential equations coming from applications in mathematical finance in which geometric Lévy processes act as the underlying stochastic processes for the assets dynamics. As a consequence of the ``geometric form'' of these processes, the comparison principle holds without assigning spatial boundary data. We present applications of our result to (i) backward stochastic differential equations and (ii) pricing of European and American derivatives via backward stochastic differential equations. Regarding (i), we extend previous results on backward stochastic differential equations in a Lévy setting and the connection to semilinear integro--partial differential equations.</abstract><pub>Matematisk Institutt, Universitetet i Oslo</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_10852_10609
source NORA - Norwegian Open Research Archives
title NONLINEAR DEGENERATE INTEGRO-PARTIAL DIFFERENTIAL EVOLUTION EQUATIONS RELATED TO GEOMETRIC LÉVY PROCESSES AND APPLICATIONS TO BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=NONLINEAR%20DEGENERATE%20INTEGRO-PARTIAL%20DIFFERENTIAL%20EVOLUTION%20EQUATIONS%20RELATED%20TO%20GEOMETRIC%20L%C3%89VY%20PROCESSES%20AND%20APPLICATIONS%20TO%20BACKWARD%20STOCHASTIC%20DIFFERENTIAL%20EQUATIONS&rft.au=Amadori,%20Anna%20Lisa&rft.date=2004&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E10852_10609%3C/cristin_3HK%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_10852_106093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true