Loading…

Real-time time-dependent self-consistent field methods with dynamic magnetic fields

The first finite basis set implementation of the real-time time-dependent self-consistent field method in a dynamic (time-dependent) magnetic field using London atomic orbitals (LAOs) is presented. The accuracy of the finite basis approach using LAOs is benchmarked against numerical results from the...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2023-09, Vol.159 (10)
Main Authors: Wibowo-Teale, Meilani, Ennifer, Benjamin J., Wibowo-Teale, Andrew M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-6678b8875fcf49871ca74ef7c066a3988126dff95bf2fc024779f69a925a9883
cites cdi_FETCH-LOGICAL-c385t-6678b8875fcf49871ca74ef7c066a3988126dff95bf2fc024779f69a925a9883
container_end_page
container_issue 10
container_start_page
container_title The Journal of chemical physics
container_volume 159
creator Wibowo-Teale, Meilani
Ennifer, Benjamin J.
Wibowo-Teale, Andrew M.
description The first finite basis set implementation of the real-time time-dependent self-consistent field method in a dynamic (time-dependent) magnetic field using London atomic orbitals (LAOs) is presented. The accuracy of the finite basis approach using LAOs is benchmarked against numerical results from the literature for the hydrogen atom and H2 in the presence of rapidly oscillating magnetic fields. This comparison is used to inform the choice of appropriate basis sets for studies under such conditions. Remarkably, relatively modest compact LAO basis sets are sufficient to obtain accurate results. Analysis of electron dynamics in the hydrogen atom shows that LAO calculations correctly capture the time evolution of orbital occupations. The Fourier transformation of the autocorrelation function yields a power spectrum exhibiting harmonics associated with coherent emission, which closely matches the literature and further confirms the accuracy of this approach. The dynamical response of the electron density in H2 for a magnetic field parallel to the internuclear axis shows similar behavior to benchmark studies. The flexibility of this implementation is then demonstrated by considering how the dynamical response changes as a function of the orientation of the molecule relative to the applied field. At non-parallel orientations, the symmetry of the system is lowered and numerical benchmark data, which exploit cylindrical symmetry, are no-longer readily available. The present study demonstrates the utility of LAO-based calculations for extreme dynamic magnetic fields, providing a stress-test on the choice of basis. Future applications of this approach for less extreme dynamic magnetic fields are briefly discussed.
doi_str_mv 10.1063/5.0160317
format article
fullrecord <record><control><sourceid>proquest_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_109685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863301035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-6678b8875fcf49871ca74ef7c066a3988126dff95bf2fc024779f69a925a9883</originalsourceid><addsrcrecordid>eNp90UtLAzEQAOAgCtbqwX-w4EWF1EnSzeMoxRcUBO19SbOJTdnN1k2K9N-btfXiwctkQj5mJgxClwQmBDi7KydAODAijtCIgFRYcAXHaARACVYc-Ck6i3ENAETQ6Qi9v1nd4ORbWwwB13ZjQ21DKqJtHDZdiD6m4e68beqitWnV1bH48mlV1LugW2-KVn8Em3LyY-I5OnG6ifbicI7R4vFhMXvG89enl9n9HBsmy4Q5F3IppSidcVMlBTFaTK0TBjjXTElJKK-dU-XSUWeAToVQjiutaKnzKxujYl_W9HlEH6rQ9brKny5pjorLMpPrPdn03efWxlS1PhrbNDrYbhsrKjljQIAN9OoPXXfbPuT5B0U5CKpYVje_PbsYe-uqTe9b3e9yx2pYQFVWhwVke7u30fikk-_CP_gbuOyCdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862607293</pqid></control><display><type>article</type><title>Real-time time-dependent self-consistent field methods with dynamic magnetic fields</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>NORA - Norwegian Open Research Archives</source><creator>Wibowo-Teale, Meilani ; Ennifer, Benjamin J. ; Wibowo-Teale, Andrew M.</creator><creatorcontrib>Wibowo-Teale, Meilani ; Ennifer, Benjamin J. ; Wibowo-Teale, Andrew M.</creatorcontrib><description>The first finite basis set implementation of the real-time time-dependent self-consistent field method in a dynamic (time-dependent) magnetic field using London atomic orbitals (LAOs) is presented. The accuracy of the finite basis approach using LAOs is benchmarked against numerical results from the literature for the hydrogen atom and H2 in the presence of rapidly oscillating magnetic fields. This comparison is used to inform the choice of appropriate basis sets for studies under such conditions. Remarkably, relatively modest compact LAO basis sets are sufficient to obtain accurate results. Analysis of electron dynamics in the hydrogen atom shows that LAO calculations correctly capture the time evolution of orbital occupations. The Fourier transformation of the autocorrelation function yields a power spectrum exhibiting harmonics associated with coherent emission, which closely matches the literature and further confirms the accuracy of this approach. The dynamical response of the electron density in H2 for a magnetic field parallel to the internuclear axis shows similar behavior to benchmark studies. The flexibility of this implementation is then demonstrated by considering how the dynamical response changes as a function of the orientation of the molecule relative to the applied field. At non-parallel orientations, the symmetry of the system is lowered and numerical benchmark data, which exploit cylindrical symmetry, are no-longer readily available. The present study demonstrates the utility of LAO-based calculations for extreme dynamic magnetic fields, providing a stress-test on the choice of basis. Future applications of this approach for less extreme dynamic magnetic fields are briefly discussed.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0160317</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Autocorrelation functions ; Benchmarks ; Electron density ; Electrons ; Fourier transforms ; Hydrogen atoms ; Magnetic fields ; Mathematical analysis ; Real time ; Self consistent fields ; Symmetry ; Time dependence</subject><ispartof>The Journal of chemical physics, 2023-09, Vol.159 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-6678b8875fcf49871ca74ef7c066a3988126dff95bf2fc024779f69a925a9883</citedby><cites>FETCH-LOGICAL-c385t-6678b8875fcf49871ca74ef7c066a3988126dff95bf2fc024779f69a925a9883</cites><orcidid>0000-0001-9617-1143 ; 0000-0003-2462-3328 ; 0009-0006-2600-9486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0160317$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,782,784,795,885,26567,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Wibowo-Teale, Meilani</creatorcontrib><creatorcontrib>Ennifer, Benjamin J.</creatorcontrib><creatorcontrib>Wibowo-Teale, Andrew M.</creatorcontrib><title>Real-time time-dependent self-consistent field methods with dynamic magnetic fields</title><title>The Journal of chemical physics</title><description>The first finite basis set implementation of the real-time time-dependent self-consistent field method in a dynamic (time-dependent) magnetic field using London atomic orbitals (LAOs) is presented. The accuracy of the finite basis approach using LAOs is benchmarked against numerical results from the literature for the hydrogen atom and H2 in the presence of rapidly oscillating magnetic fields. This comparison is used to inform the choice of appropriate basis sets for studies under such conditions. Remarkably, relatively modest compact LAO basis sets are sufficient to obtain accurate results. Analysis of electron dynamics in the hydrogen atom shows that LAO calculations correctly capture the time evolution of orbital occupations. The Fourier transformation of the autocorrelation function yields a power spectrum exhibiting harmonics associated with coherent emission, which closely matches the literature and further confirms the accuracy of this approach. The dynamical response of the electron density in H2 for a magnetic field parallel to the internuclear axis shows similar behavior to benchmark studies. The flexibility of this implementation is then demonstrated by considering how the dynamical response changes as a function of the orientation of the molecule relative to the applied field. At non-parallel orientations, the symmetry of the system is lowered and numerical benchmark data, which exploit cylindrical symmetry, are no-longer readily available. The present study demonstrates the utility of LAO-based calculations for extreme dynamic magnetic fields, providing a stress-test on the choice of basis. Future applications of this approach for less extreme dynamic magnetic fields are briefly discussed.</description><subject>Autocorrelation functions</subject><subject>Benchmarks</subject><subject>Electron density</subject><subject>Electrons</subject><subject>Fourier transforms</subject><subject>Hydrogen atoms</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Real time</subject><subject>Self consistent fields</subject><subject>Symmetry</subject><subject>Time dependence</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>3HK</sourceid><recordid>eNp90UtLAzEQAOAgCtbqwX-w4EWF1EnSzeMoxRcUBO19SbOJTdnN1k2K9N-btfXiwctkQj5mJgxClwQmBDi7KydAODAijtCIgFRYcAXHaARACVYc-Ck6i3ENAETQ6Qi9v1nd4ORbWwwB13ZjQ21DKqJtHDZdiD6m4e68beqitWnV1bH48mlV1LugW2-KVn8Em3LyY-I5OnG6ifbicI7R4vFhMXvG89enl9n9HBsmy4Q5F3IppSidcVMlBTFaTK0TBjjXTElJKK-dU-XSUWeAToVQjiutaKnzKxujYl_W9HlEH6rQ9brKny5pjorLMpPrPdn03efWxlS1PhrbNDrYbhsrKjljQIAN9OoPXXfbPuT5B0U5CKpYVje_PbsYe-uqTe9b3e9yx2pYQFVWhwVke7u30fikk-_CP_gbuOyCdA</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Wibowo-Teale, Meilani</creator><creator>Ennifer, Benjamin J.</creator><creator>Wibowo-Teale, Andrew M.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0001-9617-1143</orcidid><orcidid>https://orcid.org/0000-0003-2462-3328</orcidid><orcidid>https://orcid.org/0009-0006-2600-9486</orcidid></search><sort><creationdate>20230914</creationdate><title>Real-time time-dependent self-consistent field methods with dynamic magnetic fields</title><author>Wibowo-Teale, Meilani ; Ennifer, Benjamin J. ; Wibowo-Teale, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-6678b8875fcf49871ca74ef7c066a3988126dff95bf2fc024779f69a925a9883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autocorrelation functions</topic><topic>Benchmarks</topic><topic>Electron density</topic><topic>Electrons</topic><topic>Fourier transforms</topic><topic>Hydrogen atoms</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Real time</topic><topic>Self consistent fields</topic><topic>Symmetry</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wibowo-Teale, Meilani</creatorcontrib><creatorcontrib>Ennifer, Benjamin J.</creatorcontrib><creatorcontrib>Wibowo-Teale, Andrew M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wibowo-Teale, Meilani</au><au>Ennifer, Benjamin J.</au><au>Wibowo-Teale, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time time-dependent self-consistent field methods with dynamic magnetic fields</atitle><jtitle>The Journal of chemical physics</jtitle><date>2023-09-14</date><risdate>2023</risdate><volume>159</volume><issue>10</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The first finite basis set implementation of the real-time time-dependent self-consistent field method in a dynamic (time-dependent) magnetic field using London atomic orbitals (LAOs) is presented. The accuracy of the finite basis approach using LAOs is benchmarked against numerical results from the literature for the hydrogen atom and H2 in the presence of rapidly oscillating magnetic fields. This comparison is used to inform the choice of appropriate basis sets for studies under such conditions. Remarkably, relatively modest compact LAO basis sets are sufficient to obtain accurate results. Analysis of electron dynamics in the hydrogen atom shows that LAO calculations correctly capture the time evolution of orbital occupations. The Fourier transformation of the autocorrelation function yields a power spectrum exhibiting harmonics associated with coherent emission, which closely matches the literature and further confirms the accuracy of this approach. The dynamical response of the electron density in H2 for a magnetic field parallel to the internuclear axis shows similar behavior to benchmark studies. The flexibility of this implementation is then demonstrated by considering how the dynamical response changes as a function of the orientation of the molecule relative to the applied field. At non-parallel orientations, the symmetry of the system is lowered and numerical benchmark data, which exploit cylindrical symmetry, are no-longer readily available. The present study demonstrates the utility of LAO-based calculations for extreme dynamic magnetic fields, providing a stress-test on the choice of basis. Future applications of this approach for less extreme dynamic magnetic fields are briefly discussed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0160317</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9617-1143</orcidid><orcidid>https://orcid.org/0000-0003-2462-3328</orcidid><orcidid>https://orcid.org/0009-0006-2600-9486</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2023-09, Vol.159 (10)
issn 0021-9606
1089-7690
language eng
recordid cdi_cristin_nora_10852_109685
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); NORA - Norwegian Open Research Archives
subjects Autocorrelation functions
Benchmarks
Electron density
Electrons
Fourier transforms
Hydrogen atoms
Magnetic fields
Mathematical analysis
Real time
Self consistent fields
Symmetry
Time dependence
title Real-time time-dependent self-consistent field methods with dynamic magnetic fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20time-dependent%20self-consistent%20field%20methods%20with%20dynamic%20magnetic%20fields&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wibowo-Teale,%20Meilani&rft.date=2023-09-14&rft.volume=159&rft.issue=10&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0160317&rft_dat=%3Cproquest_crist%3E2863301035%3C/proquest_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-6678b8875fcf49871ca74ef7c066a3988126dff95bf2fc024779f69a925a9883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862607293&rft_id=info:pmid/&rfr_iscdi=true