Loading…
Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae
Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanism...
Saved in:
Published in: | Canadian journal of microbiology 2015-09, Vol.61 (9), p.655-670 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33 |
container_end_page | 670 |
container_issue | 9 |
container_start_page | 655 |
container_title | Canadian journal of microbiology |
container_volume | 61 |
creator | Pollo, Stephen M.J Zhaxybayeva, Olga Nesbø, Camilla L |
description | Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range. |
doi_str_mv | 10.1139/cjm-2015-0073 |
format | article |
fullrecord | <record><control><sourceid>gale_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_45918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A436995109</galeid><sourcerecordid>A436995109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33</originalsourceid><addsrcrecordid>eNqV0t1r1TAYB-AiipvTS2-1zBu96MxX0_RyDD8ODAW3XYc0Tdoc2qRLUvH896bnnOmODIY00PLm6Q_y5s2y1xCcQYjrj3I9FgjAsgCgwk-yY0gYKDCqyqf3vo-yFyGsAYAAE_o8O0IUQUgZOs7kygbT9THkxkaXx1750YlWTFFE42wubLsUc_XTDfO24nQ-quCm3gybXHs3bvcbIaPyRgz51G-Gecyvt0nRdUK9zJ5pMQT1av8-yW4-f7q--Fpcfv-yuji_LCQlJBZE0qZsgZaUiZa1FdCUslRjLQNVKWvZlFBpDRrWVBQIUsEWt6WUUMGaygbjk-ztLld6E6Kx3DovOASsRJyUNWRJvN-JybvbWYXIRxOkGgZhlZsDh1WyGOK0HqcI1YgQChJ99w9du9nbdNSkIGKkBBD9VZ0YFDdWu-iFXEL5OcG0rksI6qROH1ByMrf8Pjp7AKWnVaORziptUv0g9cPBD8lE9St2Yg6Br65-_If9dmiLu467ELzSfPJmFH6Tus6X8eRpPPkynnwZz-Tf7Ds1N6Nq_-i7eUwA7ID10qughJf9o5n7W9fCcdGlq-c3V2mbgqXrgFX4N9Bx888</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712845012</pqid></control><display><type>article</type><title>Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae</title><source>NORA - Norwegian Open Research Archives</source><creator>Pollo, Stephen M.J ; Zhaxybayeva, Olga ; Nesbø, Camilla L</creator><creatorcontrib>Pollo, Stephen M.J ; Zhaxybayeva, Olga ; Nesbø, Camilla L</creatorcontrib><description>Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.</description><identifier>ISSN: 1480-3275</identifier><identifier>ISSN: 0008-4166</identifier><identifier>EISSN: 1480-3275</identifier><identifier>DOI: 10.1139/cjm-2015-0073</identifier><identifier>PMID: 26211682</identifier><identifier>CODEN: CJMIAZ</identifier><language>eng</language><publisher>Canada: NRC Research Press</publisher><subject>Adaptation, Physiological - genetics ; Archaea - classification ; Archaea - genetics ; Archaea - physiology ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Bacteria ; Bacteria, Thermophilic ; Bacterial proteins ; Biological Evolution ; cell structures ; Ecological adaptation ; Evolution ; evolutionary adaptation ; Gram-negative bacteria ; Health aspects ; Homology (Biology) ; Host-bacteria relationships ; Hot Temperature ; Kosmotoga ; lateral gene transfer ; lifestyle ; Mesotoga ; Microbiology ; Nucleic acids ; Observations ; proteins ; Proteomics ; réponse au stress ; stress response ; temperature ; thermophilic microorganisms ; thermostability ; thermostabilité ; transfert latéral de gènes</subject><ispartof>Canadian journal of microbiology, 2015-09, Vol.61 (9), p.655-670</ispartof><rights>COPYRIGHT 2015 NRC Research Press</rights><rights>Copyright Canadian Science Publishing NRC Research Press Sep 2015</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33</citedby><cites>FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26546</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/45918$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26211682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pollo, Stephen M.J</creatorcontrib><creatorcontrib>Zhaxybayeva, Olga</creatorcontrib><creatorcontrib>Nesbø, Camilla L</creatorcontrib><title>Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae</title><title>Canadian journal of microbiology</title><addtitle>Can J Microbiol</addtitle><description>Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.</description><subject>Adaptation, Physiological - genetics</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - physiology</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Bacteria</subject><subject>Bacteria, Thermophilic</subject><subject>Bacterial proteins</subject><subject>Biological Evolution</subject><subject>cell structures</subject><subject>Ecological adaptation</subject><subject>Evolution</subject><subject>evolutionary adaptation</subject><subject>Gram-negative bacteria</subject><subject>Health aspects</subject><subject>Homology (Biology)</subject><subject>Host-bacteria relationships</subject><subject>Hot Temperature</subject><subject>Kosmotoga</subject><subject>lateral gene transfer</subject><subject>lifestyle</subject><subject>Mesotoga</subject><subject>Microbiology</subject><subject>Nucleic acids</subject><subject>Observations</subject><subject>proteins</subject><subject>Proteomics</subject><subject>réponse au stress</subject><subject>stress response</subject><subject>temperature</subject><subject>thermophilic microorganisms</subject><subject>thermostability</subject><subject>thermostabilité</subject><subject>transfert latéral de gènes</subject><issn>1480-3275</issn><issn>0008-4166</issn><issn>1480-3275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqV0t1r1TAYB-AiipvTS2-1zBu96MxX0_RyDD8ODAW3XYc0Tdoc2qRLUvH896bnnOmODIY00PLm6Q_y5s2y1xCcQYjrj3I9FgjAsgCgwk-yY0gYKDCqyqf3vo-yFyGsAYAAE_o8O0IUQUgZOs7kygbT9THkxkaXx1750YlWTFFE42wubLsUc_XTDfO24nQ-quCm3gybXHs3bvcbIaPyRgz51G-Gecyvt0nRdUK9zJ5pMQT1av8-yW4-f7q--Fpcfv-yuji_LCQlJBZE0qZsgZaUiZa1FdCUslRjLQNVKWvZlFBpDRrWVBQIUsEWt6WUUMGaygbjk-ztLld6E6Kx3DovOASsRJyUNWRJvN-JybvbWYXIRxOkGgZhlZsDh1WyGOK0HqcI1YgQChJ99w9du9nbdNSkIGKkBBD9VZ0YFDdWu-iFXEL5OcG0rksI6qROH1ByMrf8Pjp7AKWnVaORziptUv0g9cPBD8lE9St2Yg6Br65-_If9dmiLu467ELzSfPJmFH6Tus6X8eRpPPkynnwZz-Tf7Ds1N6Nq_-i7eUwA7ID10qughJf9o5n7W9fCcdGlq-c3V2mbgqXrgFX4N9Bx888</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Pollo, Stephen M.J</creator><creator>Zhaxybayeva, Olga</creator><creator>Nesbø, Camilla L</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QL</scope><scope>7SN</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>3HK</scope></search><sort><creationdate>20150901</creationdate><title>Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae</title><author>Pollo, Stephen M.J ; Zhaxybayeva, Olga ; Nesbø, Camilla L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - physiology</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Bacteria</topic><topic>Bacteria, Thermophilic</topic><topic>Bacterial proteins</topic><topic>Biological Evolution</topic><topic>cell structures</topic><topic>Ecological adaptation</topic><topic>Evolution</topic><topic>evolutionary adaptation</topic><topic>Gram-negative bacteria</topic><topic>Health aspects</topic><topic>Homology (Biology)</topic><topic>Host-bacteria relationships</topic><topic>Hot Temperature</topic><topic>Kosmotoga</topic><topic>lateral gene transfer</topic><topic>lifestyle</topic><topic>Mesotoga</topic><topic>Microbiology</topic><topic>Nucleic acids</topic><topic>Observations</topic><topic>proteins</topic><topic>Proteomics</topic><topic>réponse au stress</topic><topic>stress response</topic><topic>temperature</topic><topic>thermophilic microorganisms</topic><topic>thermostability</topic><topic>thermostabilité</topic><topic>transfert latéral de gènes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollo, Stephen M.J</creatorcontrib><creatorcontrib>Zhaxybayeva, Olga</creatorcontrib><creatorcontrib>Nesbø, Camilla L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Canadian journal of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pollo, Stephen M.J</au><au>Zhaxybayeva, Olga</au><au>Nesbø, Camilla L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae</atitle><jtitle>Canadian journal of microbiology</jtitle><addtitle>Can J Microbiol</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>61</volume><issue>9</issue><spage>655</spage><epage>670</epage><pages>655-670</pages><issn>1480-3275</issn><issn>0008-4166</issn><eissn>1480-3275</eissn><coden>CJMIAZ</coden><abstract>Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.</abstract><cop>Canada</cop><pub>NRC Research Press</pub><pmid>26211682</pmid><doi>10.1139/cjm-2015-0073</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1480-3275 |
ispartof | Canadian journal of microbiology, 2015-09, Vol.61 (9), p.655-670 |
issn | 1480-3275 0008-4166 1480-3275 |
language | eng |
recordid | cdi_cristin_nora_10852_45918 |
source | NORA - Norwegian Open Research Archives |
subjects | Adaptation, Physiological - genetics Archaea - classification Archaea - genetics Archaea - physiology Archaeal Proteins - genetics Archaeal Proteins - metabolism Bacteria Bacteria, Thermophilic Bacterial proteins Biological Evolution cell structures Ecological adaptation Evolution evolutionary adaptation Gram-negative bacteria Health aspects Homology (Biology) Host-bacteria relationships Hot Temperature Kosmotoga lateral gene transfer lifestyle Mesotoga Microbiology Nucleic acids Observations proteins Proteomics réponse au stress stress response temperature thermophilic microorganisms thermostability thermostabilité transfert latéral de gènes |
title | Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20thermoadaptation%20and%20the%20evolution%20of%20mesophily%20from%20the%20bacterial%20phylum%20Thermotogae&rft.jtitle=Canadian%20journal%20of%20microbiology&rft.au=Pollo,%20Stephen%20M.J&rft.date=2015-09-01&rft.volume=61&rft.issue=9&rft.spage=655&rft.epage=670&rft.pages=655-670&rft.issn=1480-3275&rft.eissn=1480-3275&rft.coden=CJMIAZ&rft_id=info:doi/10.1139/cjm-2015-0073&rft_dat=%3Cgale_3HK%3EA436995109%3C/gale_3HK%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1712845012&rft_id=info:pmid/26211682&rft_galeid=A436995109&rfr_iscdi=true |