Loading…

Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae

Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanism...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of microbiology 2015-09, Vol.61 (9), p.655-670
Main Authors: Pollo, Stephen M.J, Zhaxybayeva, Olga, Nesbø, Camilla L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33
cites cdi_FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33
container_end_page 670
container_issue 9
container_start_page 655
container_title Canadian journal of microbiology
container_volume 61
creator Pollo, Stephen M.J
Zhaxybayeva, Olga
Nesbø, Camilla L
description Thermophiles are extremophiles that grow optimally at temperatures >45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.
doi_str_mv 10.1139/cjm-2015-0073
format article
fullrecord <record><control><sourceid>gale_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_45918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A436995109</galeid><sourcerecordid>A436995109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33</originalsourceid><addsrcrecordid>eNqV0t1r1TAYB-AiipvTS2-1zBu96MxX0_RyDD8ODAW3XYc0Tdoc2qRLUvH896bnnOmODIY00PLm6Q_y5s2y1xCcQYjrj3I9FgjAsgCgwk-yY0gYKDCqyqf3vo-yFyGsAYAAE_o8O0IUQUgZOs7kygbT9THkxkaXx1750YlWTFFE42wubLsUc_XTDfO24nQ-quCm3gybXHs3bvcbIaPyRgz51G-Gecyvt0nRdUK9zJ5pMQT1av8-yW4-f7q--Fpcfv-yuji_LCQlJBZE0qZsgZaUiZa1FdCUslRjLQNVKWvZlFBpDRrWVBQIUsEWt6WUUMGaygbjk-ztLld6E6Kx3DovOASsRJyUNWRJvN-JybvbWYXIRxOkGgZhlZsDh1WyGOK0HqcI1YgQChJ99w9du9nbdNSkIGKkBBD9VZ0YFDdWu-iFXEL5OcG0rksI6qROH1ByMrf8Pjp7AKWnVaORziptUv0g9cPBD8lE9St2Yg6Br65-_If9dmiLu467ELzSfPJmFH6Tus6X8eRpPPkynnwZz-Tf7Ds1N6Nq_-i7eUwA7ID10qughJf9o5n7W9fCcdGlq-c3V2mbgqXrgFX4N9Bx888</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712845012</pqid></control><display><type>article</type><title>Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae</title><source>NORA - Norwegian Open Research Archives</source><creator>Pollo, Stephen M.J ; Zhaxybayeva, Olga ; Nesbø, Camilla L</creator><creatorcontrib>Pollo, Stephen M.J ; Zhaxybayeva, Olga ; Nesbø, Camilla L</creatorcontrib><description>Thermophiles are extremophiles that grow optimally at temperatures &gt;45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.</description><identifier>ISSN: 1480-3275</identifier><identifier>ISSN: 0008-4166</identifier><identifier>EISSN: 1480-3275</identifier><identifier>DOI: 10.1139/cjm-2015-0073</identifier><identifier>PMID: 26211682</identifier><identifier>CODEN: CJMIAZ</identifier><language>eng</language><publisher>Canada: NRC Research Press</publisher><subject>Adaptation, Physiological - genetics ; Archaea - classification ; Archaea - genetics ; Archaea - physiology ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Bacteria ; Bacteria, Thermophilic ; Bacterial proteins ; Biological Evolution ; cell structures ; Ecological adaptation ; Evolution ; evolutionary adaptation ; Gram-negative bacteria ; Health aspects ; Homology (Biology) ; Host-bacteria relationships ; Hot Temperature ; Kosmotoga ; lateral gene transfer ; lifestyle ; Mesotoga ; Microbiology ; Nucleic acids ; Observations ; proteins ; Proteomics ; réponse au stress ; stress response ; temperature ; thermophilic microorganisms ; thermostability ; thermostabilité ; transfert latéral de gènes</subject><ispartof>Canadian journal of microbiology, 2015-09, Vol.61 (9), p.655-670</ispartof><rights>COPYRIGHT 2015 NRC Research Press</rights><rights>Copyright Canadian Science Publishing NRC Research Press Sep 2015</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33</citedby><cites>FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26546</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/45918$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26211682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pollo, Stephen M.J</creatorcontrib><creatorcontrib>Zhaxybayeva, Olga</creatorcontrib><creatorcontrib>Nesbø, Camilla L</creatorcontrib><title>Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae</title><title>Canadian journal of microbiology</title><addtitle>Can J Microbiol</addtitle><description>Thermophiles are extremophiles that grow optimally at temperatures &gt;45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.</description><subject>Adaptation, Physiological - genetics</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - physiology</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Bacteria</subject><subject>Bacteria, Thermophilic</subject><subject>Bacterial proteins</subject><subject>Biological Evolution</subject><subject>cell structures</subject><subject>Ecological adaptation</subject><subject>Evolution</subject><subject>evolutionary adaptation</subject><subject>Gram-negative bacteria</subject><subject>Health aspects</subject><subject>Homology (Biology)</subject><subject>Host-bacteria relationships</subject><subject>Hot Temperature</subject><subject>Kosmotoga</subject><subject>lateral gene transfer</subject><subject>lifestyle</subject><subject>Mesotoga</subject><subject>Microbiology</subject><subject>Nucleic acids</subject><subject>Observations</subject><subject>proteins</subject><subject>Proteomics</subject><subject>réponse au stress</subject><subject>stress response</subject><subject>temperature</subject><subject>thermophilic microorganisms</subject><subject>thermostability</subject><subject>thermostabilité</subject><subject>transfert latéral de gènes</subject><issn>1480-3275</issn><issn>0008-4166</issn><issn>1480-3275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqV0t1r1TAYB-AiipvTS2-1zBu96MxX0_RyDD8ODAW3XYc0Tdoc2qRLUvH896bnnOmODIY00PLm6Q_y5s2y1xCcQYjrj3I9FgjAsgCgwk-yY0gYKDCqyqf3vo-yFyGsAYAAE_o8O0IUQUgZOs7kygbT9THkxkaXx1750YlWTFFE42wubLsUc_XTDfO24nQ-quCm3gybXHs3bvcbIaPyRgz51G-Gecyvt0nRdUK9zJ5pMQT1av8-yW4-f7q--Fpcfv-yuji_LCQlJBZE0qZsgZaUiZa1FdCUslRjLQNVKWvZlFBpDRrWVBQIUsEWt6WUUMGaygbjk-ztLld6E6Kx3DovOASsRJyUNWRJvN-JybvbWYXIRxOkGgZhlZsDh1WyGOK0HqcI1YgQChJ99w9du9nbdNSkIGKkBBD9VZ0YFDdWu-iFXEL5OcG0rksI6qROH1ByMrf8Pjp7AKWnVaORziptUv0g9cPBD8lE9St2Yg6Br65-_If9dmiLu467ELzSfPJmFH6Tus6X8eRpPPkynnwZz-Tf7Ds1N6Nq_-i7eUwA7ID10qughJf9o5n7W9fCcdGlq-c3V2mbgqXrgFX4N9Bx888</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Pollo, Stephen M.J</creator><creator>Zhaxybayeva, Olga</creator><creator>Nesbø, Camilla L</creator><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7QL</scope><scope>7SN</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>3HK</scope></search><sort><creationdate>20150901</creationdate><title>Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae</title><author>Pollo, Stephen M.J ; Zhaxybayeva, Olga ; Nesbø, Camilla L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - physiology</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Bacteria</topic><topic>Bacteria, Thermophilic</topic><topic>Bacterial proteins</topic><topic>Biological Evolution</topic><topic>cell structures</topic><topic>Ecological adaptation</topic><topic>Evolution</topic><topic>evolutionary adaptation</topic><topic>Gram-negative bacteria</topic><topic>Health aspects</topic><topic>Homology (Biology)</topic><topic>Host-bacteria relationships</topic><topic>Hot Temperature</topic><topic>Kosmotoga</topic><topic>lateral gene transfer</topic><topic>lifestyle</topic><topic>Mesotoga</topic><topic>Microbiology</topic><topic>Nucleic acids</topic><topic>Observations</topic><topic>proteins</topic><topic>Proteomics</topic><topic>réponse au stress</topic><topic>stress response</topic><topic>temperature</topic><topic>thermophilic microorganisms</topic><topic>thermostability</topic><topic>thermostabilité</topic><topic>transfert latéral de gènes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollo, Stephen M.J</creatorcontrib><creatorcontrib>Zhaxybayeva, Olga</creatorcontrib><creatorcontrib>Nesbø, Camilla L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Canadian journal of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pollo, Stephen M.J</au><au>Zhaxybayeva, Olga</au><au>Nesbø, Camilla L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae</atitle><jtitle>Canadian journal of microbiology</jtitle><addtitle>Can J Microbiol</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>61</volume><issue>9</issue><spage>655</spage><epage>670</epage><pages>655-670</pages><issn>1480-3275</issn><issn>0008-4166</issn><eissn>1480-3275</eissn><coden>CJMIAZ</coden><abstract>Thermophiles are extremophiles that grow optimally at temperatures &gt;45 °C. To survive and maintain function of their biological molecules, they have a suite of characteristics not found in organisms that grow at moderate temperature (mesophiles). At the cellular level, thermophiles have mechanisms for maintaining their membranes, nucleic acids, and other cellular structures. At the protein level, each of their proteins remains stable and retains activity at temperatures that would denature their mesophilic homologs. Conversely, cellular structures and proteins from thermophiles may not function optimally at moderate temperatures. These differences between thermophiles and mesophiles presumably present a barrier for evolutionary transitioning between the 2 lifestyles. Therefore, studying closely related thermophiles and mesophiles can help us determine how such lifestyle transitions may happen. The bacterial phylum Thermotogae contains hyperthermophiles, thermophiles, mesophiles, and organisms with temperature ranges wide enough to span both thermophilic and mesophilic temperatures. Genomic, proteomic, and physiological differences noted between other bacterial thermophiles and mesophiles are evident within the Thermotogae. We argue that the Thermotogae is an ideal group of organisms for understanding of the response to fluctuating temperature and of long-term evolutionary adaptation to a different growth temperature range.</abstract><cop>Canada</cop><pub>NRC Research Press</pub><pmid>26211682</pmid><doi>10.1139/cjm-2015-0073</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1480-3275
ispartof Canadian journal of microbiology, 2015-09, Vol.61 (9), p.655-670
issn 1480-3275
0008-4166
1480-3275
language eng
recordid cdi_cristin_nora_10852_45918
source NORA - Norwegian Open Research Archives
subjects Adaptation, Physiological - genetics
Archaea - classification
Archaea - genetics
Archaea - physiology
Archaeal Proteins - genetics
Archaeal Proteins - metabolism
Bacteria
Bacteria, Thermophilic
Bacterial proteins
Biological Evolution
cell structures
Ecological adaptation
Evolution
evolutionary adaptation
Gram-negative bacteria
Health aspects
Homology (Biology)
Host-bacteria relationships
Hot Temperature
Kosmotoga
lateral gene transfer
lifestyle
Mesotoga
Microbiology
Nucleic acids
Observations
proteins
Proteomics
réponse au stress
stress response
temperature
thermophilic microorganisms
thermostability
thermostabilité
transfert latéral de gènes
title Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20thermoadaptation%20and%20the%20evolution%20of%20mesophily%20from%20the%20bacterial%20phylum%20Thermotogae&rft.jtitle=Canadian%20journal%20of%20microbiology&rft.au=Pollo,%20Stephen%20M.J&rft.date=2015-09-01&rft.volume=61&rft.issue=9&rft.spage=655&rft.epage=670&rft.pages=655-670&rft.issn=1480-3275&rft.eissn=1480-3275&rft.coden=CJMIAZ&rft_id=info:doi/10.1139/cjm-2015-0073&rft_dat=%3Cgale_3HK%3EA436995109%3C/gale_3HK%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c644t-4c6b5d0fc68ad8d70f668c6b8d8075c9cb51eff0b8b760a471d3d5cc1e196cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1712845012&rft_id=info:pmid/26211682&rft_galeid=A436995109&rfr_iscdi=true