Loading…
Understanding phase separation in ZnCdO by a combination of structural and optical analysis
A phenomenon of wurtzite (w), zincblende (zb), and rock-salt (rs) phase separation was investigated in ZnCdO films having Cd contents in the range of 0%–60% settling a discussion on the phase stability issues in ZnCdO. First, low-Cd-content (⩽17%) ZnCdO was realized preferentially in a w matrix dete...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2011-03, Vol.83 (12), Article 125315 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A phenomenon of wurtzite (w), zincblende (zb), and rock-salt (rs) phase separation was investigated in ZnCdO films having Cd contents in the range of 0%–60% settling a discussion on the phase stability issues in ZnCdO. First, low-Cd-content (⩽17%) ZnCdO was realized preferentially in a w matrix determining optimal Zn-lean conditions by tuning the precursor decomposition rates during synthesis. However, more detailed analysis of x-ray diffraction and photoluminescence (PL) data revealed that the w single-phase stability range is likely to be as narrow as 0%–2% Cd, while samples containing 7%–17% of Cd exhibit a mixture of w and zb phases. Second, high-Cd-content (32%–60%) ZnCdO samples were realized, supplying more of the Cd precursor utilizing Zn-lean growth conditions, however, resulting in a mixture of w, zb, and rs phases. Characteristic PL signatures at 2.54 and 2.31 eV were attributed to zb-ZnCdO and rs-CdO, respectively, while the band gap variation in w-Zn1−xCdxO is given by (3.36–0.063x) as determined at 10 K. The phase separation is interpreted in terms of corresponding changes in the charge distribution and reduced stacking fault energy.
© 2011 American Physical Society |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.83.125315 |