Loading…

Assembly maps for topological cyclic homology of group algebras

We use assembly maps to study , the topological cyclic homology at a prime of the group algebra of a discrete group with coefficients in a connective ring spectrum . For any finite group, we prove that the assembly map for the family of cyclic subgroups is an isomorphism on homotopy groups. For infi...

Full description

Saved in:
Bibliographic Details
Published in:Journal für die reine und angewandte Mathematik 2019-10, Vol.2019 (755), p.247-277
Main Authors: Lück, Wolfgang, Reich, Holger, Rognes, John, Varisco, Marco
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c326t-f38a21992ad2b8f9036c478e98911e4b568393c0cf6b3c46b045c13a287b1f713
cites cdi_FETCH-LOGICAL-c326t-f38a21992ad2b8f9036c478e98911e4b568393c0cf6b3c46b045c13a287b1f713
container_end_page 277
container_issue 755
container_start_page 247
container_title Journal für die reine und angewandte Mathematik
container_volume 2019
creator Lück, Wolfgang
Reich, Holger
Rognes, John
Varisco, Marco
description We use assembly maps to study , the topological cyclic homology at a prime of the group algebra of a discrete group with coefficients in a connective ring spectrum . For any finite group, we prove that the assembly map for the family of cyclic subgroups is an isomorphism on homotopy groups. For infinite groups, we establish pro-isomorphism, (split) injectivity, and rational injectivity results, as well as counterexamples to injectivity and surjectivity. In particular, for hyperbolic groups and for virtually finitely generated abelian groups, we show that the assembly map for the family of virtually cyclic subgroups is injective but in general not surjective.
doi_str_mv 10.1515/crelle-2017-0023
format article
fullrecord <record><control><sourceid>walterdegruyter_3HK</sourceid><recordid>TN_cdi_cristin_nora_10852_60068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1515_crelle_2017_00232019755247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f38a21992ad2b8f9036c478e98911e4b568393c0cf6b3c46b045c13a287b1f713</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7evZk_EJ18Ne1J1sVVYcGLnkOaTWqXdFOSLtJ_b8vq0dO8DO8zMA9CtxTuqaTywSYXgiMMqCIAjJ-hBRVcEsmFPEcLACWJoMAu0VXOewCQVLEFelzl7Lo6jLgzfcY-JjzEPobYtNYEbEcbWou_YjevRhw9blI89tiExtXJ5Gt04U3I7uZ3LtHn5vlj_Uq27y9v69WWWM6KgXheGkaripkdq0tfAS-sUKWryopSJ2pZlLziFqwvam5FUYOQlnLDSlVTryhforvTXZvaPLQHfYjJaAqlZLoAmPAlgr9GzDk5r_vUdiaNU0vPivRJkZ4V6VnRhDydkG8TBpd2rknHcQp6H4_pML3zLzqFSknJhOI_09RuqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assembly maps for topological cyclic homology of group algebras</title><source>NORA - Norwegian Open Research Archives</source><creator>Lück, Wolfgang ; Reich, Holger ; Rognes, John ; Varisco, Marco</creator><creatorcontrib>Lück, Wolfgang ; Reich, Holger ; Rognes, John ; Varisco, Marco</creatorcontrib><description>We use assembly maps to study , the topological cyclic homology at a prime of the group algebra of a discrete group with coefficients in a connective ring spectrum . For any finite group, we prove that the assembly map for the family of cyclic subgroups is an isomorphism on homotopy groups. For infinite groups, we establish pro-isomorphism, (split) injectivity, and rational injectivity results, as well as counterexamples to injectivity and surjectivity. In particular, for hyperbolic groups and for virtually finitely generated abelian groups, we show that the assembly map for the family of virtually cyclic subgroups is injective but in general not surjective.</description><identifier>ISSN: 0075-4102</identifier><identifier>EISSN: 1435-5345</identifier><identifier>DOI: 10.1515/crelle-2017-0023</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Journal für die reine und angewandte Mathematik, 2019-10, Vol.2019 (755), p.247-277</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-f38a21992ad2b8f9036c478e98911e4b568393c0cf6b3c46b045c13a287b1f713</citedby><cites>FETCH-LOGICAL-c326t-f38a21992ad2b8f9036c478e98911e4b568393c0cf6b3c46b045c13a287b1f713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,777,882,26548</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/10852/60068$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lück, Wolfgang</creatorcontrib><creatorcontrib>Reich, Holger</creatorcontrib><creatorcontrib>Rognes, John</creatorcontrib><creatorcontrib>Varisco, Marco</creatorcontrib><title>Assembly maps for topological cyclic homology of group algebras</title><title>Journal für die reine und angewandte Mathematik</title><description>We use assembly maps to study , the topological cyclic homology at a prime of the group algebra of a discrete group with coefficients in a connective ring spectrum . For any finite group, we prove that the assembly map for the family of cyclic subgroups is an isomorphism on homotopy groups. For infinite groups, we establish pro-isomorphism, (split) injectivity, and rational injectivity results, as well as counterexamples to injectivity and surjectivity. In particular, for hyperbolic groups and for virtually finitely generated abelian groups, we show that the assembly map for the family of virtually cyclic subgroups is injective but in general not surjective.</description><issn>0075-4102</issn><issn>1435-5345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp1kE1LxDAQhoMouK7evZk_EJ18Ne1J1sVVYcGLnkOaTWqXdFOSLtJ_b8vq0dO8DO8zMA9CtxTuqaTywSYXgiMMqCIAjJ-hBRVcEsmFPEcLACWJoMAu0VXOewCQVLEFelzl7Lo6jLgzfcY-JjzEPobYtNYEbEcbWou_YjevRhw9blI89tiExtXJ5Gt04U3I7uZ3LtHn5vlj_Uq27y9v69WWWM6KgXheGkaripkdq0tfAS-sUKWryopSJ2pZlLziFqwvam5FUYOQlnLDSlVTryhforvTXZvaPLQHfYjJaAqlZLoAmPAlgr9GzDk5r_vUdiaNU0vPivRJkZ4V6VnRhDydkG8TBpd2rknHcQp6H4_pML3zLzqFSknJhOI_09RuqQ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Lück, Wolfgang</creator><creator>Reich, Holger</creator><creator>Rognes, John</creator><creator>Varisco, Marco</creator><general>De Gruyter</general><general>de Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope></search><sort><creationdate>20191001</creationdate><title>Assembly maps for topological cyclic homology of group algebras</title><author>Lück, Wolfgang ; Reich, Holger ; Rognes, John ; Varisco, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f38a21992ad2b8f9036c478e98911e4b568393c0cf6b3c46b045c13a287b1f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lück, Wolfgang</creatorcontrib><creatorcontrib>Reich, Holger</creatorcontrib><creatorcontrib>Rognes, John</creatorcontrib><creatorcontrib>Varisco, Marco</creatorcontrib><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Journal für die reine und angewandte Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lück, Wolfgang</au><au>Reich, Holger</au><au>Rognes, John</au><au>Varisco, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assembly maps for topological cyclic homology of group algebras</atitle><jtitle>Journal für die reine und angewandte Mathematik</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>2019</volume><issue>755</issue><spage>247</spage><epage>277</epage><pages>247-277</pages><issn>0075-4102</issn><eissn>1435-5345</eissn><abstract>We use assembly maps to study , the topological cyclic homology at a prime of the group algebra of a discrete group with coefficients in a connective ring spectrum . For any finite group, we prove that the assembly map for the family of cyclic subgroups is an isomorphism on homotopy groups. For infinite groups, we establish pro-isomorphism, (split) injectivity, and rational injectivity results, as well as counterexamples to injectivity and surjectivity. In particular, for hyperbolic groups and for virtually finitely generated abelian groups, we show that the assembly map for the family of virtually cyclic subgroups is injective but in general not surjective.</abstract><pub>De Gruyter</pub><doi>10.1515/crelle-2017-0023</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0075-4102
ispartof Journal für die reine und angewandte Mathematik, 2019-10, Vol.2019 (755), p.247-277
issn 0075-4102
1435-5345
language eng
recordid cdi_cristin_nora_10852_60068
source NORA - Norwegian Open Research Archives
title Assembly maps for topological cyclic homology of group algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assembly%20maps%20for%20topological%20cyclic%20homology%20of%20group%20algebras&rft.jtitle=Journal%20f%C3%BCr%20die%20reine%20und%20angewandte%20Mathematik&rft.au=L%C3%BCck,%20Wolfgang&rft.date=2019-10-01&rft.volume=2019&rft.issue=755&rft.spage=247&rft.epage=277&rft.pages=247-277&rft.issn=0075-4102&rft.eissn=1435-5345&rft_id=info:doi/10.1515/crelle-2017-0023&rft_dat=%3Cwalterdegruyter_3HK%3E10_1515_crelle_2017_00232019755247%3C/walterdegruyter_3HK%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c326t-f38a21992ad2b8f9036c478e98911e4b568393c0cf6b3c46b045c13a287b1f713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true