Loading…
Thermogravimetric Analysis – A Viable Method for Screening Novel Materials for the Sorbent Enhanced Water-gas Shift Process
Pre-combustion CO2 capture technologies are becoming viable alternatives to more conventional post-combustion capture by gas emissions scrubbing. The sorbent enhanced water-gas shift (SEWGS) process is a promising future technology for CO2 capture. However, the process needs better performing materi...
Saved in:
Published in: | Energy procedia 2017-01, Vol.114, p.2294-2303 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pre-combustion CO2 capture technologies are becoming viable alternatives to more conventional post-combustion capture by gas emissions scrubbing. The sorbent enhanced water-gas shift (SEWGS) process is a promising future technology for CO2 capture. However, the process needs better performing materials than those available today to be competitive against state-of-the-art scrubbing technologies. Layered double hydroxides (LDH) are a promising class of materials to improve the performance of the SEWGS process. These materials have a general formula of M2+1−xM3+x(OH)2(An−)x/n·mH2O, and can be tuned by substituting the metal species, changing the M2+/M3+ ratio, adjusting the synthesis parameters to influence morphology or by adding so-called promotors to improve performance. To aid an ongoing systematic study looking at several of these parameters we have developed a simple yet efficient way of screening materials for further in-depth studies. The method is highly suitable for a typical laboratory setting, and is based on thermogravimetric analysis combined with cyclic exposure to selected gases. In this article we present the results of applying the method to a selection of benchmark materials. |
---|---|
ISSN: | 1876-6102 1876-6102 |
DOI: | 10.1016/j.egypro.2017.03.1372 |