Loading…

Optical and magnetic properties of antiaromatic porphyrinoids

Magnetic and spectroscopic properties of a number of formally antiaromatic carbaporphyrins, carbathiaporphyrins and isophlorins with 4n π electrons have been investigated at density functional theory and ab initio levels of theory. The calculations show that the paratropic contribution to the magnet...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2017, Vol.19 (38), p.25979-25988
Main Authors: Valiev, Rashid R, Fliegl, Heike, Sundholm, Dage
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetic and spectroscopic properties of a number of formally antiaromatic carbaporphyrins, carbathiaporphyrins and isophlorins with 4n π electrons have been investigated at density functional theory and ab initio levels of theory. The calculations show that the paratropic contribution to the magnetically induced ring-current strength susceptibility and the magnetic dipole-transition moment between the ground and the lowest excited state are related. The vertical excitation energy (VEE) of the first excited state decreases with increasing ring-current strength susceptibility, whereas the VEE of the studied higher-lying excited states are almost independent of the size of the ring-current strength susceptibility. Strong antiaromatic porphyrinoids, based on the magnitude of the paratropic ring-current strength susceptibility, have small energy gaps between the highest occupied and lowest unoccupied molecular orbitals and a small VEE of the first excited state. The calculations show that only the lowest S → S transition contributes signficantly to the magnetically induced ring-current strength susceptibility of the antiaromatic porphyrinoids. The decreasing optical gap combined with a large angular momentum contribution to the magnetic transition moment from the first excited state explains why molecules III-VII are antiaromatic with very strong paratropic ring-current strength susceptibilities. The S → S transition is a magnetic dipole-allowed electronic transition that is typical for antiaromatic porphyrinoids with 4n π electrons.
ISSN:1463-9076
1463-9084
DOI:10.1039/c7cp05460b