Loading…

Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale

Permafrost is a key element of the cryosphere and an essential climate variable in the Global Climate Observing System. There is no remote-sensing method available to reliably monitor the permafrost thermal state. To estimate permafrost distribution at a hemispheric scale, we employ an equilibrium s...

Full description

Saved in:
Bibliographic Details
Published in:Earth-science reviews 2019-06, Vol.193, p.299-316
Main Authors: Obu, Jaroslav, Westermann, Sebastian, Bartsch, Annett, Berdnikov, Nikolai, Christiansen, Hanne H., Dashtseren, Avirmed, Delaloye, Reynald, Elberling, Bo, Etzelmüller, Bernd, Kholodov, Alexander, Khomutov, Artem, Kääb, Andreas, Leibman, Marina O., Lewkowicz, Antoni G., Panda, Santosh K., Romanovsky, Vladimir, Way, Robert G., Westergaard-Nielsen, Andreas, Wu, Tonghua, Yamkhin, Jambaljav, Zou, Defu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2333-e84b61f34859f42bc5a6bfe2f0c8935e24039c6855e4f26d67130068520ec74d3
cites cdi_FETCH-LOGICAL-c2333-e84b61f34859f42bc5a6bfe2f0c8935e24039c6855e4f26d67130068520ec74d3
container_end_page 316
container_issue
container_start_page 299
container_title Earth-science reviews
container_volume 193
creator Obu, Jaroslav
Westermann, Sebastian
Bartsch, Annett
Berdnikov, Nikolai
Christiansen, Hanne H.
Dashtseren, Avirmed
Delaloye, Reynald
Elberling, Bo
Etzelmüller, Bernd
Kholodov, Alexander
Khomutov, Artem
Kääb, Andreas
Leibman, Marina O.
Lewkowicz, Antoni G.
Panda, Santosh K.
Romanovsky, Vladimir
Way, Robert G.
Westergaard-Nielsen, Andreas
Wu, Tonghua
Yamkhin, Jambaljav
Zou, Defu
description Permafrost is a key element of the cryosphere and an essential climate variable in the Global Climate Observing System. There is no remote-sensing method available to reliably monitor the permafrost thermal state. To estimate permafrost distribution at a hemispheric scale, we employ an equilibrium state model for the temperature at the top of the permafrost (TTOP model) for the 2000–2016 period, driven by remotely-sensed land surface temperatures, down-scaled ERA-Interim climate reanalysis data, tundra wetness classes and landcover map from the ESA Landcover Climate Change Initiative (CCI) project. Subgrid variability of ground temperatures due to snow and landcover variability is represented in the model using subpixel statistics. The results are validated against borehole measurements and reviewed regionally. The accuracy of the modelled mean annual ground temperature (MAGT) at the top of the permafrost is ±2 °C when compared to permafrost borehole data. The modelled permafrost area (MAGT 0) is around 21 × 106 km2 (22% of exposed land area), which is approximately 2 × 106 km2 less than estimated previously. Detailed comparisons at a regional scale show that the model performs well in sparsely vegetated tundra regions and mountains, but is less accurate in densely vegetated boreal spruce and larch forests.
doi_str_mv 10.1016/j.earscirev.2019.04.023
format article
fullrecord <record><control><sourceid>elsevier_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_76828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012825218305907</els_id><sourcerecordid>S0012825218305907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2333-e84b61f34859f42bc5a6bfe2f0c8935e24039c6855e4f26d67130068520ec74d3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwhvoCCf7L37Kq-JMqyqKsWFiOMwaXJI7sqBK73oGDcKeeBFcFtqxmRvreG72H0IySlBKaX29SUD5o62GbMkKrlIiUMH6CJrQsWJKXrDxFE0IoS0qWsXN0EcKGxJtUxQS9PDo_voHv8T10NgxxBTyA75TxLoy4UwOuVYAGux6v16sn3LkG2tb2r9g4j1l02u8-4-McqxHT_e7rvWM4aNXCJTozqg1w9TOn6Pn2Zr24T5aru4fFfJloxjlPoBR1Tg0XZVYZwWqdqbw2wAzRZcUzYILwSudlloEwLG_ygnJC4s0I6EI0fIpmR1_tbRhtL3vnlaQkErI45I9E8Uu4EDwYOXjbKf8RKXloUW7kX4vy0KIkQsYWo3J-VEIMsLXgZYSg19BEVI-ycfZfj290qX3c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale</title><source>ScienceDirect Freedom Collection</source><source>NORA - Norwegian Open Research Archives</source><creator>Obu, Jaroslav ; Westermann, Sebastian ; Bartsch, Annett ; Berdnikov, Nikolai ; Christiansen, Hanne H. ; Dashtseren, Avirmed ; Delaloye, Reynald ; Elberling, Bo ; Etzelmüller, Bernd ; Kholodov, Alexander ; Khomutov, Artem ; Kääb, Andreas ; Leibman, Marina O. ; Lewkowicz, Antoni G. ; Panda, Santosh K. ; Romanovsky, Vladimir ; Way, Robert G. ; Westergaard-Nielsen, Andreas ; Wu, Tonghua ; Yamkhin, Jambaljav ; Zou, Defu</creator><creatorcontrib>Obu, Jaroslav ; Westermann, Sebastian ; Bartsch, Annett ; Berdnikov, Nikolai ; Christiansen, Hanne H. ; Dashtseren, Avirmed ; Delaloye, Reynald ; Elberling, Bo ; Etzelmüller, Bernd ; Kholodov, Alexander ; Khomutov, Artem ; Kääb, Andreas ; Leibman, Marina O. ; Lewkowicz, Antoni G. ; Panda, Santosh K. ; Romanovsky, Vladimir ; Way, Robert G. ; Westergaard-Nielsen, Andreas ; Wu, Tonghua ; Yamkhin, Jambaljav ; Zou, Defu</creatorcontrib><description>Permafrost is a key element of the cryosphere and an essential climate variable in the Global Climate Observing System. There is no remote-sensing method available to reliably monitor the permafrost thermal state. To estimate permafrost distribution at a hemispheric scale, we employ an equilibrium state model for the temperature at the top of the permafrost (TTOP model) for the 2000–2016 period, driven by remotely-sensed land surface temperatures, down-scaled ERA-Interim climate reanalysis data, tundra wetness classes and landcover map from the ESA Landcover Climate Change Initiative (CCI) project. Subgrid variability of ground temperatures due to snow and landcover variability is represented in the model using subpixel statistics. The results are validated against borehole measurements and reviewed regionally. The accuracy of the modelled mean annual ground temperature (MAGT) at the top of the permafrost is ±2 °C when compared to permafrost borehole data. The modelled permafrost area (MAGT &lt;0 °C) covers 13.9 × 106 km2 (ca. 15% of the exposed land area), which is within the range or slightly below the average of previous estimates. The sum of all pixels having isolated patches, sporadic, discontinuous or continuous permafrost (permafrost probability &gt;0) is around 21 × 106 km2 (22% of exposed land area), which is approximately 2 × 106 km2 less than estimated previously. Detailed comparisons at a regional scale show that the model performs well in sparsely vegetated tundra regions and mountains, but is less accurate in densely vegetated boreal spruce and larch forests.</description><identifier>ISSN: 0012-8252</identifier><identifier>EISSN: 1872-6828</identifier><identifier>DOI: 10.1016/j.earscirev.2019.04.023</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cryosphere ; Essential climate variable ; Frozen ground ; Ground temperatures ; Permafrost ; Permafrost map ; Remote sensing</subject><ispartof>Earth-science reviews, 2019-06, Vol.193, p.299-316</ispartof><rights>2019 The Authors</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2333-e84b61f34859f42bc5a6bfe2f0c8935e24039c6855e4f26d67130068520ec74d3</citedby><cites>FETCH-LOGICAL-c2333-e84b61f34859f42bc5a6bfe2f0c8935e24039c6855e4f26d67130068520ec74d3</cites><orcidid>0000-0002-8172-2536 ; 0000-0002-6023-885X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26567,27924,27925</link.rule.ids></links><search><creatorcontrib>Obu, Jaroslav</creatorcontrib><creatorcontrib>Westermann, Sebastian</creatorcontrib><creatorcontrib>Bartsch, Annett</creatorcontrib><creatorcontrib>Berdnikov, Nikolai</creatorcontrib><creatorcontrib>Christiansen, Hanne H.</creatorcontrib><creatorcontrib>Dashtseren, Avirmed</creatorcontrib><creatorcontrib>Delaloye, Reynald</creatorcontrib><creatorcontrib>Elberling, Bo</creatorcontrib><creatorcontrib>Etzelmüller, Bernd</creatorcontrib><creatorcontrib>Kholodov, Alexander</creatorcontrib><creatorcontrib>Khomutov, Artem</creatorcontrib><creatorcontrib>Kääb, Andreas</creatorcontrib><creatorcontrib>Leibman, Marina O.</creatorcontrib><creatorcontrib>Lewkowicz, Antoni G.</creatorcontrib><creatorcontrib>Panda, Santosh K.</creatorcontrib><creatorcontrib>Romanovsky, Vladimir</creatorcontrib><creatorcontrib>Way, Robert G.</creatorcontrib><creatorcontrib>Westergaard-Nielsen, Andreas</creatorcontrib><creatorcontrib>Wu, Tonghua</creatorcontrib><creatorcontrib>Yamkhin, Jambaljav</creatorcontrib><creatorcontrib>Zou, Defu</creatorcontrib><title>Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale</title><title>Earth-science reviews</title><description>Permafrost is a key element of the cryosphere and an essential climate variable in the Global Climate Observing System. There is no remote-sensing method available to reliably monitor the permafrost thermal state. To estimate permafrost distribution at a hemispheric scale, we employ an equilibrium state model for the temperature at the top of the permafrost (TTOP model) for the 2000–2016 period, driven by remotely-sensed land surface temperatures, down-scaled ERA-Interim climate reanalysis data, tundra wetness classes and landcover map from the ESA Landcover Climate Change Initiative (CCI) project. Subgrid variability of ground temperatures due to snow and landcover variability is represented in the model using subpixel statistics. The results are validated against borehole measurements and reviewed regionally. The accuracy of the modelled mean annual ground temperature (MAGT) at the top of the permafrost is ±2 °C when compared to permafrost borehole data. The modelled permafrost area (MAGT &lt;0 °C) covers 13.9 × 106 km2 (ca. 15% of the exposed land area), which is within the range or slightly below the average of previous estimates. The sum of all pixels having isolated patches, sporadic, discontinuous or continuous permafrost (permafrost probability &gt;0) is around 21 × 106 km2 (22% of exposed land area), which is approximately 2 × 106 km2 less than estimated previously. Detailed comparisons at a regional scale show that the model performs well in sparsely vegetated tundra regions and mountains, but is less accurate in densely vegetated boreal spruce and larch forests.</description><subject>Cryosphere</subject><subject>Essential climate variable</subject><subject>Frozen ground</subject><subject>Ground temperatures</subject><subject>Permafrost</subject><subject>Permafrost map</subject><subject>Remote sensing</subject><issn>0012-8252</issn><issn>1872-6828</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqFkE1OwzAQhS0EEqVwhvoCCf7L37Kq-JMqyqKsWFiOMwaXJI7sqBK73oGDcKeeBFcFtqxmRvreG72H0IySlBKaX29SUD5o62GbMkKrlIiUMH6CJrQsWJKXrDxFE0IoS0qWsXN0EcKGxJtUxQS9PDo_voHv8T10NgxxBTyA75TxLoy4UwOuVYAGux6v16sn3LkG2tb2r9g4j1l02u8-4-McqxHT_e7rvWM4aNXCJTozqg1w9TOn6Pn2Zr24T5aru4fFfJloxjlPoBR1Tg0XZVYZwWqdqbw2wAzRZcUzYILwSudlloEwLG_ygnJC4s0I6EI0fIpmR1_tbRhtL3vnlaQkErI45I9E8Uu4EDwYOXjbKf8RKXloUW7kX4vy0KIkQsYWo3J-VEIMsLXgZYSg19BEVI-ycfZfj290qX3c</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Obu, Jaroslav</creator><creator>Westermann, Sebastian</creator><creator>Bartsch, Annett</creator><creator>Berdnikov, Nikolai</creator><creator>Christiansen, Hanne H.</creator><creator>Dashtseren, Avirmed</creator><creator>Delaloye, Reynald</creator><creator>Elberling, Bo</creator><creator>Etzelmüller, Bernd</creator><creator>Kholodov, Alexander</creator><creator>Khomutov, Artem</creator><creator>Kääb, Andreas</creator><creator>Leibman, Marina O.</creator><creator>Lewkowicz, Antoni G.</creator><creator>Panda, Santosh K.</creator><creator>Romanovsky, Vladimir</creator><creator>Way, Robert G.</creator><creator>Westergaard-Nielsen, Andreas</creator><creator>Wu, Tonghua</creator><creator>Yamkhin, Jambaljav</creator><creator>Zou, Defu</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-8172-2536</orcidid><orcidid>https://orcid.org/0000-0002-6023-885X</orcidid></search><sort><creationdate>201906</creationdate><title>Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale</title><author>Obu, Jaroslav ; Westermann, Sebastian ; Bartsch, Annett ; Berdnikov, Nikolai ; Christiansen, Hanne H. ; Dashtseren, Avirmed ; Delaloye, Reynald ; Elberling, Bo ; Etzelmüller, Bernd ; Kholodov, Alexander ; Khomutov, Artem ; Kääb, Andreas ; Leibman, Marina O. ; Lewkowicz, Antoni G. ; Panda, Santosh K. ; Romanovsky, Vladimir ; Way, Robert G. ; Westergaard-Nielsen, Andreas ; Wu, Tonghua ; Yamkhin, Jambaljav ; Zou, Defu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2333-e84b61f34859f42bc5a6bfe2f0c8935e24039c6855e4f26d67130068520ec74d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cryosphere</topic><topic>Essential climate variable</topic><topic>Frozen ground</topic><topic>Ground temperatures</topic><topic>Permafrost</topic><topic>Permafrost map</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obu, Jaroslav</creatorcontrib><creatorcontrib>Westermann, Sebastian</creatorcontrib><creatorcontrib>Bartsch, Annett</creatorcontrib><creatorcontrib>Berdnikov, Nikolai</creatorcontrib><creatorcontrib>Christiansen, Hanne H.</creatorcontrib><creatorcontrib>Dashtseren, Avirmed</creatorcontrib><creatorcontrib>Delaloye, Reynald</creatorcontrib><creatorcontrib>Elberling, Bo</creatorcontrib><creatorcontrib>Etzelmüller, Bernd</creatorcontrib><creatorcontrib>Kholodov, Alexander</creatorcontrib><creatorcontrib>Khomutov, Artem</creatorcontrib><creatorcontrib>Kääb, Andreas</creatorcontrib><creatorcontrib>Leibman, Marina O.</creatorcontrib><creatorcontrib>Lewkowicz, Antoni G.</creatorcontrib><creatorcontrib>Panda, Santosh K.</creatorcontrib><creatorcontrib>Romanovsky, Vladimir</creatorcontrib><creatorcontrib>Way, Robert G.</creatorcontrib><creatorcontrib>Westergaard-Nielsen, Andreas</creatorcontrib><creatorcontrib>Wu, Tonghua</creatorcontrib><creatorcontrib>Yamkhin, Jambaljav</creatorcontrib><creatorcontrib>Zou, Defu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Earth-science reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obu, Jaroslav</au><au>Westermann, Sebastian</au><au>Bartsch, Annett</au><au>Berdnikov, Nikolai</au><au>Christiansen, Hanne H.</au><au>Dashtseren, Avirmed</au><au>Delaloye, Reynald</au><au>Elberling, Bo</au><au>Etzelmüller, Bernd</au><au>Kholodov, Alexander</au><au>Khomutov, Artem</au><au>Kääb, Andreas</au><au>Leibman, Marina O.</au><au>Lewkowicz, Antoni G.</au><au>Panda, Santosh K.</au><au>Romanovsky, Vladimir</au><au>Way, Robert G.</au><au>Westergaard-Nielsen, Andreas</au><au>Wu, Tonghua</au><au>Yamkhin, Jambaljav</au><au>Zou, Defu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale</atitle><jtitle>Earth-science reviews</jtitle><date>2019-06</date><risdate>2019</risdate><volume>193</volume><spage>299</spage><epage>316</epage><pages>299-316</pages><issn>0012-8252</issn><eissn>1872-6828</eissn><abstract>Permafrost is a key element of the cryosphere and an essential climate variable in the Global Climate Observing System. There is no remote-sensing method available to reliably monitor the permafrost thermal state. To estimate permafrost distribution at a hemispheric scale, we employ an equilibrium state model for the temperature at the top of the permafrost (TTOP model) for the 2000–2016 period, driven by remotely-sensed land surface temperatures, down-scaled ERA-Interim climate reanalysis data, tundra wetness classes and landcover map from the ESA Landcover Climate Change Initiative (CCI) project. Subgrid variability of ground temperatures due to snow and landcover variability is represented in the model using subpixel statistics. The results are validated against borehole measurements and reviewed regionally. The accuracy of the modelled mean annual ground temperature (MAGT) at the top of the permafrost is ±2 °C when compared to permafrost borehole data. The modelled permafrost area (MAGT &lt;0 °C) covers 13.9 × 106 km2 (ca. 15% of the exposed land area), which is within the range or slightly below the average of previous estimates. The sum of all pixels having isolated patches, sporadic, discontinuous or continuous permafrost (permafrost probability &gt;0) is around 21 × 106 km2 (22% of exposed land area), which is approximately 2 × 106 km2 less than estimated previously. Detailed comparisons at a regional scale show that the model performs well in sparsely vegetated tundra regions and mountains, but is less accurate in densely vegetated boreal spruce and larch forests.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.earscirev.2019.04.023</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8172-2536</orcidid><orcidid>https://orcid.org/0000-0002-6023-885X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-8252
ispartof Earth-science reviews, 2019-06, Vol.193, p.299-316
issn 0012-8252
1872-6828
language eng
recordid cdi_cristin_nora_10852_76828
source ScienceDirect Freedom Collection; NORA - Norwegian Open Research Archives
subjects Cryosphere
Essential climate variable
Frozen ground
Ground temperatures
Permafrost
Permafrost map
Remote sensing
title Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Northern%20Hemisphere%20permafrost%20map%20based%20on%20TTOP%20modelling%20for%202000%E2%80%932016%20at%201%E2%80%AFkm2%20scale&rft.jtitle=Earth-science%20reviews&rft.au=Obu,%20Jaroslav&rft.date=2019-06&rft.volume=193&rft.spage=299&rft.epage=316&rft.pages=299-316&rft.issn=0012-8252&rft.eissn=1872-6828&rft_id=info:doi/10.1016/j.earscirev.2019.04.023&rft_dat=%3Celsevier_crist%3ES0012825218305907%3C/elsevier_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2333-e84b61f34859f42bc5a6bfe2f0c8935e24039c6855e4f26d67130068520ec74d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true