Loading…

Fault detection and diagnosis of nonlinear dynamical processes through correlation dimension and fractal analysis based dynamic kernel PCA

•Fractal Analysis is investigated for Optimized Dimensionality Reduction in Nonlinear Dynamical Processes.•Nonlinear Correlation Dimension improves Statistical Models’ accuracy and prevents overfitting/underfitting.•It ensures Intrinsic number of principal components in static PCA and optimized dyna...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2021-01, Vol.229, p.116099, Article 116099
Main Authors: Bounoua, Wahiba, Bakdi, Azzeddine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-273ad2b13a862d0569d771330e62dfa2f3509bf3ef75fd5b57ffc734f4e289b53
cites cdi_FETCH-LOGICAL-c364t-273ad2b13a862d0569d771330e62dfa2f3509bf3ef75fd5b57ffc734f4e289b53
container_end_page
container_issue
container_start_page 116099
container_title Chemical engineering science
container_volume 229
creator Bounoua, Wahiba
Bakdi, Azzeddine
description •Fractal Analysis is investigated for Optimized Dimensionality Reduction in Nonlinear Dynamical Processes.•Nonlinear Correlation Dimension improves Statistical Models’ accuracy and prevents overfitting/underfitting.•It ensures Intrinsic number of principal components in static PCA and optimized dynamical PCA structure.•Accurate and robust extraction of Nonlinear Dynamical relations in Fractal-based Dynamic Kernel PCA.•FDKPCA outperforms contemporary methods to detect real faults in PRONTO heterogeneous benchmark. A novel Dynamic Kernel PCA (DKPCA) method is developed for process monitoring in nonlinear dynamical systems. Classical DKPCA approaches still exhibit vague linearity assumptions to determine the number of principal components and to construct the dynamical structure. The optimal Static PCA (SPCA) and Dynamic PCA (DPCA) structures are constructed herein through the powerful theory of the nonlinear Fractal Dimension (FDim). While DKPCA offers a generic data-driven modelling of nonlinear dynamical systems, the fractal correlation dimension provides an intrinsic measure of the data complexity counting for the nonlinear dynamics and the chaotic behaviour. The proposed Fractal-based DKPCA (FDKPCA) integrates the two strategies to overcome SPCA/DPCA/DKPCA shortcomings, FDim allows verifying the degree of fitting and ensures optimal dimensionality reduction. The novel fault detection and diagnosis method is validated through seven applications using the Process Network Optimization (PRONTO) benchmark with real heterogeneous data, FDKPCA showed superior performance compared to contemporary approaches.
doi_str_mv 10.1016/j.ces.2020.116099
format article
fullrecord <record><control><sourceid>elsevier_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_84160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000925092030631X</els_id><sourcerecordid>S000925092030631X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-273ad2b13a862d0569d771330e62dfa2f3509bf3ef75fd5b57ffc734f4e289b53</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWC8P4Mq8wNRc5oorKVaFgi50Hf5J_tTUaSLJVOgr-NSm1m5dhQPnfH_OIeSKsylnvL5ZTTWmqWAia16zrjsiE942sihLVh2TCWOsK0TFulNyltIqy6bhbEK-57AZRmpwRD264Cl4Q42DpQ_JJRos9cEPziNEarYe1k7DQD9jyOcSJjq-x7BZvlMdYsQBfhHGrdGnA8xG0GPOgIdhu2P2kNAcYPQDo8eBvszuLsiJhSHh5d97Tt7m96-zx2Lx_PA0u1sUWtblWIhGghE9l9DWwrCq7kyuIiXDLC0IK3PL3kq0TWVN1VeNtbqRpS1RtF1fyXNyvefq6NLovPIhguKsrYRqyzxedvCDI6QU0arP6NYQt9mldnOrlcr91W5utZ87Z273Gcxf_3IYVdIOvUbjYp5WmeD-Sf8AUmOJ7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fault detection and diagnosis of nonlinear dynamical processes through correlation dimension and fractal analysis based dynamic kernel PCA</title><source>ScienceDirect Freedom Collection</source><source>NORA - Norwegian Open Research Archives</source><creator>Bounoua, Wahiba ; Bakdi, Azzeddine</creator><creatorcontrib>Bounoua, Wahiba ; Bakdi, Azzeddine</creatorcontrib><description>•Fractal Analysis is investigated for Optimized Dimensionality Reduction in Nonlinear Dynamical Processes.•Nonlinear Correlation Dimension improves Statistical Models’ accuracy and prevents overfitting/underfitting.•It ensures Intrinsic number of principal components in static PCA and optimized dynamical PCA structure.•Accurate and robust extraction of Nonlinear Dynamical relations in Fractal-based Dynamic Kernel PCA.•FDKPCA outperforms contemporary methods to detect real faults in PRONTO heterogeneous benchmark. A novel Dynamic Kernel PCA (DKPCA) method is developed for process monitoring in nonlinear dynamical systems. Classical DKPCA approaches still exhibit vague linearity assumptions to determine the number of principal components and to construct the dynamical structure. The optimal Static PCA (SPCA) and Dynamic PCA (DPCA) structures are constructed herein through the powerful theory of the nonlinear Fractal Dimension (FDim). While DKPCA offers a generic data-driven modelling of nonlinear dynamical systems, the fractal correlation dimension provides an intrinsic measure of the data complexity counting for the nonlinear dynamics and the chaotic behaviour. The proposed Fractal-based DKPCA (FDKPCA) integrates the two strategies to overcome SPCA/DPCA/DKPCA shortcomings, FDim allows verifying the degree of fitting and ensures optimal dimensionality reduction. The novel fault detection and diagnosis method is validated through seven applications using the Process Network Optimization (PRONTO) benchmark with real heterogeneous data, FDKPCA showed superior performance compared to contemporary approaches.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2020.116099</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Correlation dimension ; Dynamic kernel PCA ; Fault detection and diagnosis ; Fractal analysis ; Intrinsic dimension ; Process network optimization (PRONTO) benchmark</subject><ispartof>Chemical engineering science, 2021-01, Vol.229, p.116099, Article 116099</ispartof><rights>2020 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-273ad2b13a862d0569d771330e62dfa2f3509bf3ef75fd5b57ffc734f4e289b53</citedby><cites>FETCH-LOGICAL-c364t-273ad2b13a862d0569d771330e62dfa2f3509bf3ef75fd5b57ffc734f4e289b53</cites><orcidid>0000-0002-0899-1692 ; 0000-0001-7139-6813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26566,27923,27924</link.rule.ids></links><search><creatorcontrib>Bounoua, Wahiba</creatorcontrib><creatorcontrib>Bakdi, Azzeddine</creatorcontrib><title>Fault detection and diagnosis of nonlinear dynamical processes through correlation dimension and fractal analysis based dynamic kernel PCA</title><title>Chemical engineering science</title><description>•Fractal Analysis is investigated for Optimized Dimensionality Reduction in Nonlinear Dynamical Processes.•Nonlinear Correlation Dimension improves Statistical Models’ accuracy and prevents overfitting/underfitting.•It ensures Intrinsic number of principal components in static PCA and optimized dynamical PCA structure.•Accurate and robust extraction of Nonlinear Dynamical relations in Fractal-based Dynamic Kernel PCA.•FDKPCA outperforms contemporary methods to detect real faults in PRONTO heterogeneous benchmark. A novel Dynamic Kernel PCA (DKPCA) method is developed for process monitoring in nonlinear dynamical systems. Classical DKPCA approaches still exhibit vague linearity assumptions to determine the number of principal components and to construct the dynamical structure. The optimal Static PCA (SPCA) and Dynamic PCA (DPCA) structures are constructed herein through the powerful theory of the nonlinear Fractal Dimension (FDim). While DKPCA offers a generic data-driven modelling of nonlinear dynamical systems, the fractal correlation dimension provides an intrinsic measure of the data complexity counting for the nonlinear dynamics and the chaotic behaviour. The proposed Fractal-based DKPCA (FDKPCA) integrates the two strategies to overcome SPCA/DPCA/DKPCA shortcomings, FDim allows verifying the degree of fitting and ensures optimal dimensionality reduction. The novel fault detection and diagnosis method is validated through seven applications using the Process Network Optimization (PRONTO) benchmark with real heterogeneous data, FDKPCA showed superior performance compared to contemporary approaches.</description><subject>Correlation dimension</subject><subject>Dynamic kernel PCA</subject><subject>Fault detection and diagnosis</subject><subject>Fractal analysis</subject><subject>Intrinsic dimension</subject><subject>Process network optimization (PRONTO) benchmark</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kMtKAzEYhYMoWC8P4Mq8wNRc5oorKVaFgi50Hf5J_tTUaSLJVOgr-NSm1m5dhQPnfH_OIeSKsylnvL5ZTTWmqWAia16zrjsiE942sihLVh2TCWOsK0TFulNyltIqy6bhbEK-57AZRmpwRD264Cl4Q42DpQ_JJRos9cEPziNEarYe1k7DQD9jyOcSJjq-x7BZvlMdYsQBfhHGrdGnA8xG0GPOgIdhu2P2kNAcYPQDo8eBvszuLsiJhSHh5d97Tt7m96-zx2Lx_PA0u1sUWtblWIhGghE9l9DWwrCq7kyuIiXDLC0IK3PL3kq0TWVN1VeNtbqRpS1RtF1fyXNyvefq6NLovPIhguKsrYRqyzxedvCDI6QU0arP6NYQt9mldnOrlcr91W5utZ87Z273Gcxf_3IYVdIOvUbjYp5WmeD-Sf8AUmOJ7A</recordid><startdate>20210116</startdate><enddate>20210116</enddate><creator>Bounoua, Wahiba</creator><creator>Bakdi, Azzeddine</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0002-0899-1692</orcidid><orcidid>https://orcid.org/0000-0001-7139-6813</orcidid></search><sort><creationdate>20210116</creationdate><title>Fault detection and diagnosis of nonlinear dynamical processes through correlation dimension and fractal analysis based dynamic kernel PCA</title><author>Bounoua, Wahiba ; Bakdi, Azzeddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-273ad2b13a862d0569d771330e62dfa2f3509bf3ef75fd5b57ffc734f4e289b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Correlation dimension</topic><topic>Dynamic kernel PCA</topic><topic>Fault detection and diagnosis</topic><topic>Fractal analysis</topic><topic>Intrinsic dimension</topic><topic>Process network optimization (PRONTO) benchmark</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bounoua, Wahiba</creatorcontrib><creatorcontrib>Bakdi, Azzeddine</creatorcontrib><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bounoua, Wahiba</au><au>Bakdi, Azzeddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault detection and diagnosis of nonlinear dynamical processes through correlation dimension and fractal analysis based dynamic kernel PCA</atitle><jtitle>Chemical engineering science</jtitle><date>2021-01-16</date><risdate>2021</risdate><volume>229</volume><spage>116099</spage><pages>116099-</pages><artnum>116099</artnum><issn>0009-2509</issn><eissn>1873-4405</eissn><abstract>•Fractal Analysis is investigated for Optimized Dimensionality Reduction in Nonlinear Dynamical Processes.•Nonlinear Correlation Dimension improves Statistical Models’ accuracy and prevents overfitting/underfitting.•It ensures Intrinsic number of principal components in static PCA and optimized dynamical PCA structure.•Accurate and robust extraction of Nonlinear Dynamical relations in Fractal-based Dynamic Kernel PCA.•FDKPCA outperforms contemporary methods to detect real faults in PRONTO heterogeneous benchmark. A novel Dynamic Kernel PCA (DKPCA) method is developed for process monitoring in nonlinear dynamical systems. Classical DKPCA approaches still exhibit vague linearity assumptions to determine the number of principal components and to construct the dynamical structure. The optimal Static PCA (SPCA) and Dynamic PCA (DPCA) structures are constructed herein through the powerful theory of the nonlinear Fractal Dimension (FDim). While DKPCA offers a generic data-driven modelling of nonlinear dynamical systems, the fractal correlation dimension provides an intrinsic measure of the data complexity counting for the nonlinear dynamics and the chaotic behaviour. The proposed Fractal-based DKPCA (FDKPCA) integrates the two strategies to overcome SPCA/DPCA/DKPCA shortcomings, FDim allows verifying the degree of fitting and ensures optimal dimensionality reduction. The novel fault detection and diagnosis method is validated through seven applications using the Process Network Optimization (PRONTO) benchmark with real heterogeneous data, FDKPCA showed superior performance compared to contemporary approaches.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2020.116099</doi><orcidid>https://orcid.org/0000-0002-0899-1692</orcidid><orcidid>https://orcid.org/0000-0001-7139-6813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2021-01, Vol.229, p.116099, Article 116099
issn 0009-2509
1873-4405
language eng
recordid cdi_cristin_nora_10852_84160
source ScienceDirect Freedom Collection; NORA - Norwegian Open Research Archives
subjects Correlation dimension
Dynamic kernel PCA
Fault detection and diagnosis
Fractal analysis
Intrinsic dimension
Process network optimization (PRONTO) benchmark
title Fault detection and diagnosis of nonlinear dynamical processes through correlation dimension and fractal analysis based dynamic kernel PCA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20detection%20and%20diagnosis%20of%20nonlinear%20dynamical%20processes%20through%20correlation%20dimension%20and%20fractal%20analysis%20based%20dynamic%20kernel%20PCA&rft.jtitle=Chemical%20engineering%20science&rft.au=Bounoua,%20Wahiba&rft.date=2021-01-16&rft.volume=229&rft.spage=116099&rft.pages=116099-&rft.artnum=116099&rft.issn=0009-2509&rft.eissn=1873-4405&rft_id=info:doi/10.1016/j.ces.2020.116099&rft_dat=%3Celsevier_crist%3ES000925092030631X%3C/elsevier_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-273ad2b13a862d0569d771330e62dfa2f3509bf3ef75fd5b57ffc734f4e289b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true