Loading…

Algebraic cobordism and étale cohomology

Thomason’s étale descent theorem for Bott periodic algebraic K–theory is generalized to any MGL module over a regular Noetherian scheme of finite dimension. Over arbitrary Noetherian schemes of finite dimension, this generalizes the analogue of Thomason’s theorem for Weibel’s homotopy K–theory. This...

Full description

Saved in:
Bibliographic Details
Published in:Geometry & topology 2022-01, Vol.26 (2), p.477-586
Main Authors: Elmanto, Elden, Levine, Marc, Spitzweck, Markus, Østvær, Paul Arne
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c218t-b14c6497625eeac6b60ad69c0096b1c5064218afdbec518564e7fcd5879c48813
container_end_page 586
container_issue 2
container_start_page 477
container_title Geometry & topology
container_volume 26
creator Elmanto, Elden
Levine, Marc
Spitzweck, Markus
Østvær, Paul Arne
description Thomason’s étale descent theorem for Bott periodic algebraic K–theory is generalized to any MGL module over a regular Noetherian scheme of finite dimension. Over arbitrary Noetherian schemes of finite dimension, this generalizes the analogue of Thomason’s theorem for Weibel’s homotopy K–theory. This is achieved by amplifying the effects from the case of motivic cohomology, using the slice spectral sequence in the case of the universal example of algebraic cobordism. We also obtain integral versions of these statements: Bousfield localization at étale motivic cohomology is the universal way to impose étale descent for these theories. As applications, we describe the étale local objects in modules over these spectra and show that they satisfy the full six functor formalism, construct an étale descent spectral sequence converging to Bott-inverted motivic Landweber exact theories, and prove cellularity and effectivity of the étale versions of these motivic spectra.
doi_str_mv 10.2140/gt.2022.26.477
format article
fullrecord <record><control><sourceid>crossref_crist</sourceid><recordid>TN_cdi_cristin_nora_10852_94806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2140_gt_2022_26_477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-b14c6497625eeac6b60ad69c0096b1c5064218afdbec518564e7fcd5879c48813</originalsourceid><addsrcrecordid>eNo1kLtOxDAURC0EEstCS8u2FAnXr2unXK14SSvRQG3ZjhOCkhjZafaT-A5-DK-AakajoykOIdcUakYF3PVLzYCxmmEtlDohK8pRVMA1nJYuUFYcEM7JRc4fAKAUVytyux374JId_MZHF1M75Glj53bz_bXYMZTxPU5xjP3hkpx1dszh6i_X5O3h_nX3VO1fHp93233lGdVL5ajwKBqFTIZgPToE22LjARp01EtAUTjbtS54SbVEEVTnW6lV44XWlK_Jze-vT0NehtnMMVlDQUtmGqEBC1H_EzHnFDrzmYbJpkOhzFGF6RdzVGEYmqKC_wBdEk_h</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic cobordism and étale cohomology</title><source>NORA - Norwegian Open Research Archives</source><source>Alma/SFX Local Collection</source><creator>Elmanto, Elden ; Levine, Marc ; Spitzweck, Markus ; Østvær, Paul Arne</creator><creatorcontrib>Elmanto, Elden ; Levine, Marc ; Spitzweck, Markus ; Østvær, Paul Arne</creatorcontrib><description>Thomason’s étale descent theorem for Bott periodic algebraic K–theory is generalized to any MGL module over a regular Noetherian scheme of finite dimension. Over arbitrary Noetherian schemes of finite dimension, this generalizes the analogue of Thomason’s theorem for Weibel’s homotopy K–theory. This is achieved by amplifying the effects from the case of motivic cohomology, using the slice spectral sequence in the case of the universal example of algebraic cobordism. We also obtain integral versions of these statements: Bousfield localization at étale motivic cohomology is the universal way to impose étale descent for these theories. As applications, we describe the étale local objects in modules over these spectra and show that they satisfy the full six functor formalism, construct an étale descent spectral sequence converging to Bott-inverted motivic Landweber exact theories, and prove cellularity and effectivity of the étale versions of these motivic spectra.</description><identifier>ISSN: 1465-3060</identifier><identifier>EISSN: 1364-0380</identifier><identifier>DOI: 10.2140/gt.2022.26.477</identifier><language>eng</language><publisher>University of Warwick</publisher><ispartof>Geometry &amp; topology, 2022-01, Vol.26 (2), p.477-586</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-b14c6497625eeac6b60ad69c0096b1c5064218afdbec518564e7fcd5879c48813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,26567,27924,27925</link.rule.ids></links><search><creatorcontrib>Elmanto, Elden</creatorcontrib><creatorcontrib>Levine, Marc</creatorcontrib><creatorcontrib>Spitzweck, Markus</creatorcontrib><creatorcontrib>Østvær, Paul Arne</creatorcontrib><title>Algebraic cobordism and étale cohomology</title><title>Geometry &amp; topology</title><description>Thomason’s étale descent theorem for Bott periodic algebraic K–theory is generalized to any MGL module over a regular Noetherian scheme of finite dimension. Over arbitrary Noetherian schemes of finite dimension, this generalizes the analogue of Thomason’s theorem for Weibel’s homotopy K–theory. This is achieved by amplifying the effects from the case of motivic cohomology, using the slice spectral sequence in the case of the universal example of algebraic cobordism. We also obtain integral versions of these statements: Bousfield localization at étale motivic cohomology is the universal way to impose étale descent for these theories. As applications, we describe the étale local objects in modules over these spectra and show that they satisfy the full six functor formalism, construct an étale descent spectral sequence converging to Bott-inverted motivic Landweber exact theories, and prove cellularity and effectivity of the étale versions of these motivic spectra.</description><issn>1465-3060</issn><issn>1364-0380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNo1kLtOxDAURC0EEstCS8u2FAnXr2unXK14SSvRQG3ZjhOCkhjZafaT-A5-DK-AakajoykOIdcUakYF3PVLzYCxmmEtlDohK8pRVMA1nJYuUFYcEM7JRc4fAKAUVytyux374JId_MZHF1M75Glj53bz_bXYMZTxPU5xjP3hkpx1dszh6i_X5O3h_nX3VO1fHp93233lGdVL5ajwKBqFTIZgPToE22LjARp01EtAUTjbtS54SbVEEVTnW6lV44XWlK_Jze-vT0NehtnMMVlDQUtmGqEBC1H_EzHnFDrzmYbJpkOhzFGF6RdzVGEYmqKC_wBdEk_h</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Elmanto, Elden</creator><creator>Levine, Marc</creator><creator>Spitzweck, Markus</creator><creator>Østvær, Paul Arne</creator><general>University of Warwick</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3HK</scope></search><sort><creationdate>20220101</creationdate><title>Algebraic cobordism and étale cohomology</title><author>Elmanto, Elden ; Levine, Marc ; Spitzweck, Markus ; Østvær, Paul Arne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-b14c6497625eeac6b60ad69c0096b1c5064218afdbec518564e7fcd5879c48813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elmanto, Elden</creatorcontrib><creatorcontrib>Levine, Marc</creatorcontrib><creatorcontrib>Spitzweck, Markus</creatorcontrib><creatorcontrib>Østvær, Paul Arne</creatorcontrib><collection>CrossRef</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>Geometry &amp; topology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elmanto, Elden</au><au>Levine, Marc</au><au>Spitzweck, Markus</au><au>Østvær, Paul Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic cobordism and étale cohomology</atitle><jtitle>Geometry &amp; topology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>26</volume><issue>2</issue><spage>477</spage><epage>586</epage><pages>477-586</pages><issn>1465-3060</issn><eissn>1364-0380</eissn><abstract>Thomason’s étale descent theorem for Bott periodic algebraic K–theory is generalized to any MGL module over a regular Noetherian scheme of finite dimension. Over arbitrary Noetherian schemes of finite dimension, this generalizes the analogue of Thomason’s theorem for Weibel’s homotopy K–theory. This is achieved by amplifying the effects from the case of motivic cohomology, using the slice spectral sequence in the case of the universal example of algebraic cobordism. We also obtain integral versions of these statements: Bousfield localization at étale motivic cohomology is the universal way to impose étale descent for these theories. As applications, we describe the étale local objects in modules over these spectra and show that they satisfy the full six functor formalism, construct an étale descent spectral sequence converging to Bott-inverted motivic Landweber exact theories, and prove cellularity and effectivity of the étale versions of these motivic spectra.</abstract><pub>University of Warwick</pub><doi>10.2140/gt.2022.26.477</doi><tpages>110</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-3060
ispartof Geometry & topology, 2022-01, Vol.26 (2), p.477-586
issn 1465-3060
1364-0380
language eng
recordid cdi_cristin_nora_10852_94806
source NORA - Norwegian Open Research Archives; Alma/SFX Local Collection
title Algebraic cobordism and étale cohomology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_crist&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20cobordism%20and%20%C3%A9tale%20cohomology&rft.jtitle=Geometry%20&%20topology&rft.au=Elmanto,%20Elden&rft.date=2022-01-01&rft.volume=26&rft.issue=2&rft.spage=477&rft.epage=586&rft.pages=477-586&rft.issn=1465-3060&rft.eissn=1364-0380&rft_id=info:doi/10.2140/gt.2022.26.477&rft_dat=%3Ccrossref_crist%3E10_2140_gt_2022_26_477%3C/crossref_crist%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-b14c6497625eeac6b60ad69c0096b1c5064218afdbec518564e7fcd5879c48813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true