Loading…

Detecting Koszulness and related homological properties from the algebra structure of Koszul homology

Let k be a field and R a standard graded k-algebra. We denote by HR the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of R. We discuss the relationship between the multiplicative structure of HR and the property that R is a Koszul algebra. More general...

Full description

Saved in:
Bibliographic Details
Main Authors: Croll, Amanda, Dellaca, Roger, Gupta, Anjan, Hoffmeier, Justin, Rangel Tracy, Denise, Sega, Liana, Sosa, Gabriel, Thompson, Peder
Format: Article
Language:English
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Croll, Amanda
Dellaca, Roger
Gupta, Anjan
Hoffmeier, Justin
Rangel Tracy, Denise
Sega, Liana
Sosa, Gabriel
Thompson, Peder
description Let k be a field and R a standard graded k-algebra. We denote by HR the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of R. We discuss the relationship between the multiplicative structure of HR and the property that R is a Koszul algebra. More generally, we work in the setting of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of Poincare series. As an application, we show that the Poincar ´ e series of all finitely generated modules over a stretched ´ Cohen-Macaulay local ring are rational, sharing a common denominator.
format article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_2637668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_2637668</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_26376683</originalsourceid><addsrcrecordid>eNqNjbsOgkAQRWksjPoP4weYCESw9xETW3syLgNssuyQmdlCv14L7K1uc865y4zOZOTMxx7urO8UIqkCxhaEAhq1MPDIgXvvMMAkPJGYJ4VOeAQbCDD09BQENUnOkhBwN7d-7mudLToMSpt5V9n2enmcbjsnXr_nTWTBJs-Lw74pqrKuqmP5D_MBlvw_yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting Koszulness and related homological properties from the algebra structure of Koszul homology</title><source>NORA - Norwegian Open Research Archives</source><creator>Croll, Amanda ; Dellaca, Roger ; Gupta, Anjan ; Hoffmeier, Justin ; Rangel Tracy, Denise ; Sega, Liana ; Sosa, Gabriel ; Thompson, Peder</creator><creatorcontrib>Croll, Amanda ; Dellaca, Roger ; Gupta, Anjan ; Hoffmeier, Justin ; Rangel Tracy, Denise ; Sega, Liana ; Sosa, Gabriel ; Thompson, Peder</creatorcontrib><description>Let k be a field and R a standard graded k-algebra. We denote by HR the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of R. We discuss the relationship between the multiplicative structure of HR and the property that R is a Koszul algebra. More generally, we work in the setting of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of Poincare series. As an application, we show that the Poincar ´ e series of all finitely generated modules over a stretched ´ Cohen-Macaulay local ring are rational, sharing a common denominator.</description><language>eng</language><publisher>Cambridge University Press</publisher><creationdate>2018</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26567</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/2637668$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Croll, Amanda</creatorcontrib><creatorcontrib>Dellaca, Roger</creatorcontrib><creatorcontrib>Gupta, Anjan</creatorcontrib><creatorcontrib>Hoffmeier, Justin</creatorcontrib><creatorcontrib>Rangel Tracy, Denise</creatorcontrib><creatorcontrib>Sega, Liana</creatorcontrib><creatorcontrib>Sosa, Gabriel</creatorcontrib><creatorcontrib>Thompson, Peder</creatorcontrib><title>Detecting Koszulness and related homological properties from the algebra structure of Koszul homology</title><description>Let k be a field and R a standard graded k-algebra. We denote by HR the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of R. We discuss the relationship between the multiplicative structure of HR and the property that R is a Koszul algebra. More generally, we work in the setting of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of Poincare series. As an application, we show that the Poincar ´ e series of all finitely generated modules over a stretched ´ Cohen-Macaulay local ring are rational, sharing a common denominator.</description><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNjbsOgkAQRWksjPoP4weYCESw9xETW3syLgNssuyQmdlCv14L7K1uc865y4zOZOTMxx7urO8UIqkCxhaEAhq1MPDIgXvvMMAkPJGYJ4VOeAQbCDD09BQENUnOkhBwN7d-7mudLToMSpt5V9n2enmcbjsnXr_nTWTBJs-Lw74pqrKuqmP5D_MBlvw_yg</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Croll, Amanda</creator><creator>Dellaca, Roger</creator><creator>Gupta, Anjan</creator><creator>Hoffmeier, Justin</creator><creator>Rangel Tracy, Denise</creator><creator>Sega, Liana</creator><creator>Sosa, Gabriel</creator><creator>Thompson, Peder</creator><general>Cambridge University Press</general><scope>3HK</scope></search><sort><creationdate>2018</creationdate><title>Detecting Koszulness and related homological properties from the algebra structure of Koszul homology</title><author>Croll, Amanda ; Dellaca, Roger ; Gupta, Anjan ; Hoffmeier, Justin ; Rangel Tracy, Denise ; Sega, Liana ; Sosa, Gabriel ; Thompson, Peder</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_26376683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Croll, Amanda</creatorcontrib><creatorcontrib>Dellaca, Roger</creatorcontrib><creatorcontrib>Gupta, Anjan</creatorcontrib><creatorcontrib>Hoffmeier, Justin</creatorcontrib><creatorcontrib>Rangel Tracy, Denise</creatorcontrib><creatorcontrib>Sega, Liana</creatorcontrib><creatorcontrib>Sosa, Gabriel</creatorcontrib><creatorcontrib>Thompson, Peder</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Croll, Amanda</au><au>Dellaca, Roger</au><au>Gupta, Anjan</au><au>Hoffmeier, Justin</au><au>Rangel Tracy, Denise</au><au>Sega, Liana</au><au>Sosa, Gabriel</au><au>Thompson, Peder</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Koszulness and related homological properties from the algebra structure of Koszul homology</atitle><date>2018</date><risdate>2018</risdate><abstract>Let k be a field and R a standard graded k-algebra. We denote by HR the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of R. We discuss the relationship between the multiplicative structure of HR and the property that R is a Koszul algebra. More generally, we work in the setting of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of Poincare series. As an application, we show that the Poincar ´ e series of all finitely generated modules over a stretched ´ Cohen-Macaulay local ring are rational, sharing a common denominator.</abstract><pub>Cambridge University Press</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_cristin_nora_11250_2637668
source NORA - Norwegian Open Research Archives
title Detecting Koszulness and related homological properties from the algebra structure of Koszul homology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Koszulness%20and%20related%20homological%20properties%20from%20the%20algebra%20structure%20of%20Koszul%20homology&rft.au=Croll,%20Amanda&rft.date=2018&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_2637668%3C/cristin_3HK%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_11250_26376683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true