Loading…

Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling

Water electrolyzers that use a membrane electrolyte between the electrodes are a promising technology towards mass production of renewable hydrogen. High power setups produce a lot of heat which has to be transported through the cell, making heat management essential. Knowing thermal conductivity va...

Full description

Saved in:
Bibliographic Details
Main Authors: Bock, Robert, Karoliussen, Håvard, Seland, Frode, Pollet, Bruno, Thomassen, Magnus, Holdcroft, Steven, Burheim, Odne Stokke
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Bock, Robert
Karoliussen, Håvard
Seland, Frode
Pollet, Bruno
Thomassen, Magnus
Holdcroft, Steven
Burheim, Odne Stokke
description Water electrolyzers that use a membrane electrolyte between the electrodes are a promising technology towards mass production of renewable hydrogen. High power setups produce a lot of heat which has to be transported through the cell, making heat management essential. Knowing thermal conductivity values of the employed materials is crucial when modeling the temperature distribution inside an electrolyzer. The thermal conductivity was measured for different titanium-based porous transport layers (PTL) and a partially methylated Hexamethyl-p-Terphenyl Polybenzimidazolium (HMT-PMBI-Cl- membrane. The four titanium-based sintered transport layers materials have thermal conductivities between 1.0 and 2.5 0.2 WK−1m−1 at 10 bar compaction pressure. The HMT-PMBI-Cl- membrane has a thermal conductivity of 0.19 0.04 WK−1m−1 at 0% relative humidity at 10 bar compaction pressure and 0.21 0.03 WK−1m−1 at 100% relative humidity ( water molecules per ion exchange site at room temperature) at 10 bar compaction pressure. Combining the determined thermal conductivity values with data from the literature, 2D thermal models of a proton exchange membrane water electrolyzer (PEMWE) and an anion exchange membrane water electrolyzer (AEMWE) were built to evaluate the temperature distribution in the through-plane direction. A temperature difference of 7–17 K was shown to arise between the center of the membrane electrode assembly and bipolar plates for the PEMWE and more than 18 K for the AEMWE.
format article
fullrecord <record><control><sourceid>cristin_3HK</sourceid><recordid>TN_cdi_cristin_nora_11250_2689736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>11250_2689736</sourcerecordid><originalsourceid>FETCH-cristin_nora_11250_26897363</originalsourceid><addsrcrecordid>eNqNj8FOw0AMRHNoD1XpP5gPqNQkNIUzAnHhxj1yN0670q4deb3Q8Ef8JVuExJXDyKPR08izqFZ103bbutnfraqvV8KU1fMJ7ExXacQATnjIzvy7txlkhEjxqMgEyANMopITWAlS8QYBZ1LwDJOKCf9AyL44urgz8on-Cj7QCkuBnKmE-ZM0wSgKRnEiRctKMPhk6o_ZrhVRBgrlv5tqOWJItPm96-r2-ent8WXrtOCeexbFvi6zdn3T3T8c2q79D_MNmLFcKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling</title><source>NORA - Norwegian Open Research Archives</source><creator>Bock, Robert ; Karoliussen, Håvard ; Seland, Frode ; Pollet, Bruno ; Thomassen, Magnus ; Holdcroft, Steven ; Burheim, Odne Stokke</creator><creatorcontrib>Bock, Robert ; Karoliussen, Håvard ; Seland, Frode ; Pollet, Bruno ; Thomassen, Magnus ; Holdcroft, Steven ; Burheim, Odne Stokke</creatorcontrib><description>Water electrolyzers that use a membrane electrolyte between the electrodes are a promising technology towards mass production of renewable hydrogen. High power setups produce a lot of heat which has to be transported through the cell, making heat management essential. Knowing thermal conductivity values of the employed materials is crucial when modeling the temperature distribution inside an electrolyzer. The thermal conductivity was measured for different titanium-based porous transport layers (PTL) and a partially methylated Hexamethyl-p-Terphenyl Polybenzimidazolium (HMT-PMBI-Cl- membrane. The four titanium-based sintered transport layers materials have thermal conductivities between 1.0 and 2.5 0.2 WK−1m−1 at 10 bar compaction pressure. The HMT-PMBI-Cl- membrane has a thermal conductivity of 0.19 0.04 WK−1m−1 at 0% relative humidity at 10 bar compaction pressure and 0.21 0.03 WK−1m−1 at 100% relative humidity ( water molecules per ion exchange site at room temperature) at 10 bar compaction pressure. Combining the determined thermal conductivity values with data from the literature, 2D thermal models of a proton exchange membrane water electrolyzer (PEMWE) and an anion exchange membrane water electrolyzer (AEMWE) were built to evaluate the temperature distribution in the through-plane direction. A temperature difference of 7–17 K was shown to arise between the center of the membrane electrode assembly and bipolar plates for the PEMWE and more than 18 K for the AEMWE.</description><identifier>ISSN: 1236-1254</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Anion exchange membrane ; Proton exchange membrane ; Temperature distribution ; Thermal conductivity ; Water electrolysis</subject><creationdate>2019</creationdate><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26565</link.rule.ids><linktorsrc>$$Uhttp://hdl.handle.net/11250/2689736$$EView_record_in_NORA$$FView_record_in_$$GNORA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Bock, Robert</creatorcontrib><creatorcontrib>Karoliussen, Håvard</creatorcontrib><creatorcontrib>Seland, Frode</creatorcontrib><creatorcontrib>Pollet, Bruno</creatorcontrib><creatorcontrib>Thomassen, Magnus</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><creatorcontrib>Burheim, Odne Stokke</creatorcontrib><title>Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling</title><description>Water electrolyzers that use a membrane electrolyte between the electrodes are a promising technology towards mass production of renewable hydrogen. High power setups produce a lot of heat which has to be transported through the cell, making heat management essential. Knowing thermal conductivity values of the employed materials is crucial when modeling the temperature distribution inside an electrolyzer. The thermal conductivity was measured for different titanium-based porous transport layers (PTL) and a partially methylated Hexamethyl-p-Terphenyl Polybenzimidazolium (HMT-PMBI-Cl- membrane. The four titanium-based sintered transport layers materials have thermal conductivities between 1.0 and 2.5 0.2 WK−1m−1 at 10 bar compaction pressure. The HMT-PMBI-Cl- membrane has a thermal conductivity of 0.19 0.04 WK−1m−1 at 0% relative humidity at 10 bar compaction pressure and 0.21 0.03 WK−1m−1 at 100% relative humidity ( water molecules per ion exchange site at room temperature) at 10 bar compaction pressure. Combining the determined thermal conductivity values with data from the literature, 2D thermal models of a proton exchange membrane water electrolyzer (PEMWE) and an anion exchange membrane water electrolyzer (AEMWE) were built to evaluate the temperature distribution in the through-plane direction. A temperature difference of 7–17 K was shown to arise between the center of the membrane electrode assembly and bipolar plates for the PEMWE and more than 18 K for the AEMWE.</description><subject>Anion exchange membrane</subject><subject>Proton exchange membrane</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><subject>Water electrolysis</subject><issn>1236-1254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNqNj8FOw0AMRHNoD1XpP5gPqNQkNIUzAnHhxj1yN0670q4deb3Q8Ef8JVuExJXDyKPR08izqFZ103bbutnfraqvV8KU1fMJ7ExXacQATnjIzvy7txlkhEjxqMgEyANMopITWAlS8QYBZ1LwDJOKCf9AyL44urgz8on-Cj7QCkuBnKmE-ZM0wSgKRnEiRctKMPhk6o_ZrhVRBgrlv5tqOWJItPm96-r2-ent8WXrtOCeexbFvi6zdn3T3T8c2q79D_MNmLFcKA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Bock, Robert</creator><creator>Karoliussen, Håvard</creator><creator>Seland, Frode</creator><creator>Pollet, Bruno</creator><creator>Thomassen, Magnus</creator><creator>Holdcroft, Steven</creator><creator>Burheim, Odne Stokke</creator><general>Elsevier</general><scope>3HK</scope></search><sort><creationdate>2019</creationdate><title>Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling</title><author>Bock, Robert ; Karoliussen, Håvard ; Seland, Frode ; Pollet, Bruno ; Thomassen, Magnus ; Holdcroft, Steven ; Burheim, Odne Stokke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-cristin_nora_11250_26897363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anion exchange membrane</topic><topic>Proton exchange membrane</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><topic>Water electrolysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Bock, Robert</creatorcontrib><creatorcontrib>Karoliussen, Håvard</creatorcontrib><creatorcontrib>Seland, Frode</creatorcontrib><creatorcontrib>Pollet, Bruno</creatorcontrib><creatorcontrib>Thomassen, Magnus</creatorcontrib><creatorcontrib>Holdcroft, Steven</creatorcontrib><creatorcontrib>Burheim, Odne Stokke</creatorcontrib><collection>NORA - Norwegian Open Research Archives</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bock, Robert</au><au>Karoliussen, Håvard</au><au>Seland, Frode</au><au>Pollet, Bruno</au><au>Thomassen, Magnus</au><au>Holdcroft, Steven</au><au>Burheim, Odne Stokke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling</atitle><date>2019</date><risdate>2019</risdate><issn>1236-1254</issn><abstract>Water electrolyzers that use a membrane electrolyte between the electrodes are a promising technology towards mass production of renewable hydrogen. High power setups produce a lot of heat which has to be transported through the cell, making heat management essential. Knowing thermal conductivity values of the employed materials is crucial when modeling the temperature distribution inside an electrolyzer. The thermal conductivity was measured for different titanium-based porous transport layers (PTL) and a partially methylated Hexamethyl-p-Terphenyl Polybenzimidazolium (HMT-PMBI-Cl- membrane. The four titanium-based sintered transport layers materials have thermal conductivities between 1.0 and 2.5 0.2 WK−1m−1 at 10 bar compaction pressure. The HMT-PMBI-Cl- membrane has a thermal conductivity of 0.19 0.04 WK−1m−1 at 0% relative humidity at 10 bar compaction pressure and 0.21 0.03 WK−1m−1 at 100% relative humidity ( water molecules per ion exchange site at room temperature) at 10 bar compaction pressure. Combining the determined thermal conductivity values with data from the literature, 2D thermal models of a proton exchange membrane water electrolyzer (PEMWE) and an anion exchange membrane water electrolyzer (AEMWE) were built to evaluate the temperature distribution in the through-plane direction. A temperature difference of 7–17 K was shown to arise between the center of the membrane electrode assembly and bipolar plates for the PEMWE and more than 18 K for the AEMWE.</abstract><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1236-1254
ispartof
issn 1236-1254
language eng
recordid cdi_cristin_nora_11250_2689736
source NORA - Norwegian Open Research Archives
subjects Anion exchange membrane
Proton exchange membrane
Temperature distribution
Thermal conductivity
Water electrolysis
title Measuring the thermal conductivity of membrane and porous transport layer in proton and anion exchange membrane water electrolyzers for temperature distribution modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cristin_3HK&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20thermal%20conductivity%20of%20membrane%20and%20porous%20transport%20layer%20in%20proton%20and%20anion%20exchange%20membrane%20water%20electrolyzers%20for%20temperature%20distribution%20modeling&rft.au=Bock,%20Robert&rft.date=2019&rft.issn=1236-1254&rft_id=info:doi/&rft_dat=%3Ccristin_3HK%3E11250_2689736%3C/cristin_3HK%3E%3Cgrp_id%3Ecdi_FETCH-cristin_nora_11250_26897363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true